

C H A P T E R 4

4

S
peech M

anager

Speech Manager 4

This chapter describes the Speech Manager, the part of the Macintosh system software
that provides a standardized method for Macintosh applications to generate
synthesized speech.

You need to read this chapter if you want your application to be able to generate speech.
For example, you may want your application to incorporate the capability to speak its
dialog box messages to the user. A word-processing application might use the Speech
Manager to implement a command that speaks a selected section of a document to the
user. A multimedia application might use the Speech Manager to provide a narration of
a QuickTime movie instead of including sampled-sound data on a movie track. Because
sound samples can take up large amounts of room on disk, using text in place of
sampled sound is extremely efficient.

If you are developing an application that needs only to generate speech from strings,
then the information on speech contained in the chapter “Introduction to Sound on the
Macintosh” in this book might be sufficient. If, however, you need to be able to
manipulate the speech output or customize it to make it easier for your users to
understand, you should read this chapter.

The Speech Manager is not available in all system software versions. It was introduced
with the Macintosh computers with audio visual capabilities in the summer of 1993. It
will continue to be incorporated into future versions of system software. You should use
the Gestalt function to ensure that the speech services you need are available before
calling them. See the discussion in the section “Checking for Speech Manager
Capabilities” beginning on page 4-12 for details.

The Speech Manager and the Sound Manager adopt many of the same metaphors in the
processes of sound production and speech generation. You should be aware that the
Speech Manager’s approach often differs in subtle but important ways from that of the
Sound Manager. Reading the chapter “Sound Manager” in this book might help you to
learn to use the Speech Manager, but it is not required.

Also, while the Speech Manager uses the Sound Manager, your application should not
attempt to directly access any Sound Manager data structures used by the Speech
Manager. Because the Speech Manager is likely to be a rapidly evolving portion of
system software, relying on Speech Manager data structures not explicitly documented
in this chapter is likely to pose compatibility problems for your application.

This chapter begins with an introduction to the speech generation process and then
discusses how you can

■ check for the availability of the Speech Manager

■ create and dispose of speech channels

■ generate speech with different voices

■ obtain information about and change speech channel settings

■ start and stop speech production

■ synchronize speech production with other activities by using callback procedures

■ embed Speech Manager commands within text to make it more understandable
4-3

C H A P T E R 4

Speech Manager

■ convert text into phonemes and allow the user to enter phonetic text directly

■ create, install, and manipulate customized pronunciation dictionaries

About the Speech Manager 4

You can use the Speech Manager to incorporate synthesized speech into your
application. This section provides an overview and describes the basic concepts of the
Speech Manager, and it outlines the process that the Speech Manager uses to convert text
into speech. The Speech Manager converts text into sound data, which it passes to the
Sound Manager to play through the current sound output device. The Speech Manager’s
interaction with the Sound Manager is transparent to your application, so you don’t
need to be familiar with the Sound Manager to take advantage of the Speech Manager’s
capabilities.

Figure 4-1 illustrates the speech generation process. Your application can initiate speech
generation by passing a string or a buffer of text to the Speech Manager. The Speech
Manager is responsible for sending the text to a speech synthesizer, a component that
contains executable code that manages all communication between the Speech Manager
and the Sound Manager. A synthesizer is usually contained in a resource in a file within
the System Folder. A synthesizer is like a speech engine. It uses built-in dictionaries and
pronunciation rules to help determine how to pronounce text. You can provide custom
pronunciation dictionaries as described in the section “Including Pronunciation
Dictionaries” beginning on page 4-36.

Figure 4-1 The speech generation process

As Figure 4-1 suggests, the Speech Manager is simply a dispatch mechanism that allows
your application to take advantage of the capabilities of whatever speech synthesizers,
voices, and hardware are installed. The Speech Manager itself does not do any of the
work of converting text into speech; it just provides a convenient programming interface
that manages access to speech synthesizers and, indirectly, to the sound hardware. The

Text

Sound ManagerSpeech Manager

Audio
hardware

Speech synthesizer
4-4 About the Speech Manager

C H A P T E R 4

Speech Manager

4

S
peech M

anager

Speech Manager uses the Component Manager to access whatever speech synthesizers
are available and allows applications to take maximum advantage of a computer’s
speech facilities without knowing what those facilities are. Because the Speech
Manager’s routines work on all voices and synthesizers, you will not need to rewrite
your application to take advantage of improvements in speech technology.

Voices 4
Your application can use the system default voice to generate speech or it can specify
that the Speech Manager use a particular voice that is available on the current computer
system. A voice is a set of characteristics defined in parameters that specify a particular
quality of speech. Just as different people’s voices have different tonal qualities, so too
can different voices have different qualities. A synthesized voice might sound male or
female and might sound like an adult or a child. Some voices sound distinctively
synthetic, while others sound more like real people. Figure 4-2 shows how the Speech
Manager uses speech channels to synthesize speech with different voices.

Figure 4-2 The Speech Manager and multiple voices

As speech-synthesizing technology develops, the voices that your application can
access are likely to sound more and more human. Each voice is designed to work with
a particular speech synthesizer and can be customized in specific ways to create
different effects.

Voices are usually stored in one of three places. The Speech Manager will first look in the
application’s resources file chain when attempting to locate a voice specification record.
Then the Speech Manager will look in the System Folder and then the Extensions folder.
Voices stored in the System Folder or Extensions folder are normally available to all

Speech Manager

Speech
synthesizers

Voice 1 Voice 2 Voice 3 Voice 4

A B C
About the Speech Manager 4-5

C H A P T E R 4

Speech Manager

applications. Voices stored in the resource fork of an application file are private to that
application and will not work if the synthesizers they depend on are not installed on a
user’s system.

Most of the time, your application designates the voice that speaks text, and usually that
is the default voice. Based on the needs of your users and the way in which you expect
them to use voices in your application you can provide access to voices in a number of
different ways. You could include access to selecting voices in a dialog box that is
available from a menu item such as Voices... Any application that allows users to choose
among voices requires additional information about the available voices beyond the
information provided by a voice specification record (described in detail on page 4-46),
whose data should never be presented to the user. Such additional information might
include the name of the voice as well as what script and language it supports.

Applications can use the GetVoiceDescription function (described in detail on
page 4-66) with a voice specification record to obtain such information in a voice
description record (described in detail on page 4-47). You might provide access to voices
through a control panel. For information about implementing control panels, see Inside
Macintosh: More Macintosh Toolbox. Or, you could implement a voices menu in your
application’s main menu bar, if you think that users will want to change the voice often
and you have the room available. It’s not a good idea to implement a hierarchical Voices
menu since hierarchical menus are harder to use. For more information about choosing a
user interface for your application, see Macintosh Human Interface Guidelines.

Speech Attributes 4
Any given person has only one voice, but can alter the characteristics of his or her speech
in a number of different ways. For example, a person can speak slowly or quickly and
with a low or a high pitch. Similarly, the Speech Manager provides routines that allow
you to modify these and other speech attributes, regardless of which voice is in use. A
speech attribute is a setting defined for a class of voices or for all voices that affects the
quality of speech produced by the Speech Manager. The Speech Manager provides
routines to directly alter two speech attributes—speech rate and speech pitch. These
routines are described in the section “Changing Speech Attributes” beginning on
page 4-73. You can change two other speech attributes—pitch modulation and speech
volume—by using the mechanism of speech information selectors, which is described in
the section “Speech Information Selectors” beginning on page 4-39.

The speech rate of a speech channel is the approximate number of words of text that the
synthesizer should say in one minute. Slower speech rates make the speech easier to
understand, but can be annoyingly tedious to listen to. Some applications, such as aids
for the visually impaired, require very fast speech rates. Speech rates are expressed as
fixed-point values. Each speech synthesizer determines it own range of speech rates. The
speech pitch of a speech channel represents the middle pitch of the voice, roughly
corresponding to the key in which a song is played. It is a fixed-point value in the range
of 0.000 through 127.000, where 60.000 corresponds to middle C on a conventional piano.
Each 1.000-unit change in a value corresponds to a musical half step. This is the same
scale used in specifying MIDI note values, as described in the chapter “Sound Manager”
4-6 About the Speech Manager

C H A P T E R 4

Speech Manager

4

S
peech M

anager

in this book. Figure 4-3 shows a piano keyboard with the corresponding MIDI note
values.

Figure 4-3 MIDI note values and corresponding piano keys

MIDI note values differ from speech pitch values in that they are always integral and
have a wider range than speech pitch values. On the scale used to measure both MIDI
note values and speech pitches, a change of +12 units corresponds to doubling the
frequency (an increase of one octave), while a change of –12 units corresponds to halving
the frequency (a decrease of one octave). A frequency is a precise indication of the
number of hertz of a sound wave at any instant. If you need to convert between speech
pitches and hertz, note that a speech pitch of 60.000 corresponds to 261.625 Hz.
Meanwhile, when a speech pitch value rises by one unit, the corresponding hertz value
is multiplied by the twelfth root of 2, defined by the Sound Manager constant
twelfthRootTwo. The following formula thus converts a speech pitch into hertz:

hertz = twelfthRootTwo (pitch – 60.000) * 261.625

In order to calculate speech pitch in terms of hertz, you can use the following formula:

pitch = 60 + (ln(hertz) – ln(261.625))/ln(twelfthRootTwo)

Typical voice frequencies might range from around 90 hertz for a low-pitched male voice
to about 300 hertz for a high-pitched child’s voice. These frequencies correspond to
approximate pitch values in the ranges of 30.000 to 40.000 and 55.000 to 65.000,
respectively.

You can determine the current speech pitch on a speech channel by calling the
GetSpeechPitch function, described on page 4-75. You can change the current pitch by
calling the SetSpeechPitch function, described on page 4-76. You can also determine
the current speech rate and change it by using the GetSpeechRate function, described
on page 4-73 and the SetSpeechRate function, described on page 4-74. Changes in
speech pitch and speech rate are effective immediately (as soon as the synthesizer can
respond), even if they occur in the middle of a word.

Standard five-octave keyboard range

0 12 24 36 48 60 72 96 108 120 12784

C–2 C–1 C0 C1 C2 C3 C4 C6 C7 C8C5

Key
name

MIDI
key #
About the Speech Manager 4-7

C H A P T E R 4

Speech Manager

Pitch is the listener’s subjective interpretation of speech’s average frequency. The speech
pitch specified is a baseline value corresponding to a particular frequency, from which
the actual frequency of generated speech varies with the rises and falls of the intonation
of speech. When a person speaks, there is a tune to the speech. Often you are more aware
of the singsong quality, or change in the range of speech pitch, of a language that you
don’t know rather than one that you speak. The synthesizer must generate this tune in
order to sound more human-like. Speech pitch is always described by a set of numbers
that specify the range of pitch of the tune a synthesizer generates. This set of numbers
can be the middle pitch and how far to deviate from that pitch or it can be the set of
pitches within which the semi-tones of the tune can vary. Figure 4-4 shows an example of
the range of pitches produced as the phrase “The cat sat on the mat.” is spoken.

Figure 4-4 An example of pitch range for a voice

To simulate the variability in frequency of human speech, the Speech Manager defines
the speech attribute of pitch modulation. The pitch modulation of a speech channel is
the maximum amount by which the actual frequency of speech generated may deviate
from the speech pitch.

Pitch modulation is also expressed as a fixed-point value in the range of 0.000 to 100.000.
A pitch modulation value of 0.000 corresponds to a monotone in which all speech is
generated at the frequency corresponding to the speech pitch. Speech generated at this
pitch modulation would sound unnaturally robotic. Given a speech pitch value of
46.000, a pitch modulation of 2.000 would mean that the widest possible range of pitches
corresponding to the actual frequency of generated text would be 44.000 to 48.000.

In some synthesizers, the actual pitch modulation may be restricted to a certain range.
For example, if a synthesizer supported the full range of pitch modulations, a pitch
modulation of 100.000 would result in unintelligible speech. In fact, however, some
synthesizers, even with such a setting, produce speech that sounds virtually monotone.
Even within a synthesizer, different voices might have different valid pitch modulation
ranges. The Speech Manager provides no mechanism for obtaining the range of valid

50

65

35

100

0

Frequency
hZ

Time

pbas–pmod

pbas+pmod

pbas

The cat sat the mat.on
4-8 About the Speech Manager

C H A P T E R 4

Speech Manager

4

S
peech M

anager

pitch modulations, although some synthesizers may allow applications designed to
work with those synthesizers to obtain such ranges.

You can obtain the pitch modulation by using the GetSpeechInfo function with the
soPitchMod speech information selector, and you can change the pitch modulation by
using the SetSpeechInfo function with the same selector. Speech information selectors
are described in “Speech Information Selectors” beginning on page 4-39.

The speech volume of a speech channel is the average amplitude at which the channel
generates speech. Volumes are expressed in fixed-point units ranging from 0.0 through
1.0. A value of 0.0 corresponds to silence, and a value of 1.0 corresponds to the maximum
possible volume. Volume units lie on a scale that is linear with amplitude or voltage. A
doubling of perceived loudness corresponds to a doubling of the volume.

Note that just as a speech synthesizer does not generate speech at a constant frequency, it
does not generate speech at a constant amplitude. Even when the speech rate is high,
brief pauses break up a steady stream of speech. The speech volume is, like speech pitch,
an indicator of an average. There is no way to determine or change the modulation of
speech volume.

A final speech attribute is prosody, the rhythm, modulation, and emphasis patterns of
speech.There is no simple mechanism for your application to determine what rhythmic
patterns a speech synthesizer is applying to speech. However, you can exert some
control over prosody by using prosodic control symbols, discussed in “Prosodic Control
Symbols” on page 4-34. Also, you can disable ending prosody, the modulation that
distinguishes the end of a sentence or statement in normal speech, by using the
SpeakBuffer function, described on page 4-57.

Speech Channels 4
To indicate to the Speech Manager which voice or attributes you would like it to use in
generating speech, your application must use a speech channel. A speech channel is a
data structure that the Speech Manager uses when processing text; it can be associated
with a particular voice and particular speech attributes. Because multiple speech
channels can coexist, your application can create several different vocal environments (to
simulate a conversation, for example). Because a synthesizer can be associated with only
one language and region, your application would need to create a separate speech
channel to process each language in bilingual or multilingual text. (Currently, however,
only English-producing synthesizers are available.)

Different speech channels can even generate speech simultaneously, subject to processor
capabilities and Sound Manager limitations. This capability should be used with
restraint, however, because it can be hard for the user to understand any speech when
more than one channel is generating speech at a time. In general, your application
should generate speech only at the specific request of the user and should allow the user
to turn off speech output. At the very least, your application should include an option
that allows the user to view text instead of hearing it. Some users might have trouble
understanding speech generated by the Speech Manager, and others might have a
About the Speech Manager 4-9

C H A P T E R 4

Speech Manager

hearing deficit. Even users who are able to clearly understand computer-synthesized
speech might prefer to read rather than hear.

Using the Speech Manager, you can identify how many voices are available and sort
through an index of the voices to get information about a specified voice such as its
gender, age, or the synthesizer with which it is associated. In general, your application
does not need to know which speech synthesizer it is using, and in most cases, you
do not need to be concerned with which speech synthesizer a voice is associated.
Sometimes, however, a speech synthesizer may provide special capabilities beyond that
provided by the Speech Manager. For example, a speech synthesizer might allow you to
select an option to speak numbers in a nonstandard way. The Speech Manager allows
you to determine which synthesizer is associated with a voice for these circumstances
and provides hooks that allow your application to take advantage of synthesizer-specific
capabilities.

In general, your application can achieve the best results by not making assumptions
about which synthesizers might be available. The user of a 2 MB Macintosh Classic
might use a synthesizer with low RAM requirements, while the user of a 20 MB
Macintosh Quadra 950 might take advantage of a synthesizer that provides better audio
quality at the expense of memory usage. The Speech Manager makes it easy to
accommodate both kinds of users. Currently there are three synthesizers available with
the Speech Manager. Each synthesizer has its own RAM requirements. To be compatible
with all three synthesizers, you must reserve enough space in your application’s heap to
accommodate their requirements. In general, reserving around 250 KB per channel that
you anticipate using provides enough space for the MacinTalk Pro synthesizer.

Callback Routines 4
The Speech Manager allows you to implement callback routines. With callback routines,
you can synchronize speech with other actions. You can use callback routines to obtain
information about when a synthesizer has finished speaking a phoneme, reaches a word
ending, or finishes speaking. Using this feature, you could highlight text as it is being
spoken or synchronize the speech production with a QuickTime movie or animation of a
mouth speaking.

You can also customize speech that your application generates with the Speech Manager
by embedding commands in text strings stored in resources in your application or by
programmatically embedding commands in commonly spoken text.

The next section of this chapter shows you how to implement the most commonly used
features of the Speech Manager. It demonstrates how you use the SpeakString
function to convert a text string into speech without allocating a speech channel, how
you can customize speech, how you can obtain more control over speech by allocating
speech channels, and how you can make speech easier to understand by embedding
commands within text strings. It also shows how to install a custom dictionary to
provide more accurate pronunciation of less common words such as names.
4-10 About the Speech Manager

C H A P T E R 4

Speech Manager

4

S
peech M

anager

Using the Speech Manager 4

You can use the Speech Manager simply to convert Pascal-style strings into speech. This
simple technique is described in the chapter “Introduction to Sound on the Macintosh”
in this book. This section shows how you can take advantage of more features of the
Speech Manager.

Before you can generate synthetic speech on a Macintosh computer, you need to make
sure that the Speech Manager is installed. “Checking for Speech Manager Capabilities”
beginning on page 4-12 shows how to check for the availability of the Speech Manager.
It also demonstrates how to use the SpeakString function to generate synthesized
speech in the most straightforward way.

To take advantage of most of the Speech Manager’s features, you must allocate a speech
channel to pass to Speech Manager functions and dispose of the speech channel when
you are finished using it. “Creating, Using, and Disposing of a Speech Channel”
beginning on page 4-13 demonstrates how you do this and shows how you can use the
SpeakText function to start speech generation from a buffer of text. Some applications
permit users to choose a voice from those available to be used for speech generation.
The CountVoices, GetIndVoice, and GetVoiceDescription functions support
this capability. “Working With Different Voices” beginning on page 4-14 shows how you
can use these functions to choose among available voices.

You can also use the SpeakText function to customize some attributes of speech
generation. “Adjusting Speech Attributes” beginning on page 4-16 shows how you can
do this. When you start synthesizing speech, you may need a way to stop speech from
being generated. You can use the StopSpeech function to stop speech immediately, or
you can use the StopSpeechAt function to choose exactly where you want speech
stopped. You can stop speech temporarily and then resume it again using the
PauseSpeechAt and ContinueSpeech functions. “Pausing Speech” beginning on
page 4-18 shows how to pause or stop speech production and begin it again.

You might need to synchronize speech generation with other activities. For example,
your application might include an on screen animation that must be synchronized with
speech generation, or your application might need to determine when the Speech
Manager has finished processing text on a speech channel so that it can unlock a handle
or release some memory. “Implementing Callback Procedures” beginning on page 4-19
shows how you can accomplish these goals.

If your application uses embedded speech commands to obtain exacting control over
speech generation, you should read “Writing Embedded Speech Commands” beginning
on page 4-23. This section describes the complete syntax of embedded commands, and
provides a guide to all embedded commands supported by the Speech Manager.

The Speech Manager allows you to enter phonemic text directly. If your application
speaks only text that the user writes, this feature is unlikely to be useful to you, because
you cannot anticipate what the user might enter. However, if there are a few or many
sentences that your application frequently converts into speech, it might be useful to
Using the Speech Manager 4-11

C H A P T E R 4

Speech Manager

represent parts of these sentences phonemically rather than textually. “Phonemic
Representation of Speech” beginning on page 4-32 describes how to convert text
to phonemes.

Some applications might allow the user to use pronunciation dictionaries to override
the default pronunciations of certain words. “Including Pronunciation Dictionaries”
beginning on page 4-36 explains how you can create a new pronunciation dictionary
resource or install an existing pronunciation dictionary resource into a speech channel.
The section also explains how you can provide the user with the default phonemic
pronunciation of text by using the TextToPhonemes function.

Checking for Speech Manager Capabilities 4
Because the Speech Manager is not available in all system software versions, you should
always check for speech capabilities before attempting to use them. Listing 4-1 defines a
function that determines whether the Speech Manager is available.

Listing 4-1 Checking for speech generation capabilities

FUNCTION MySpeechMgrPresent: OSErr;

VAR

myErr: OSErr;

myFeature: LongInt; {feature being tested}

BEGIN

{Test Speech Manager present bit.}

myerr := Gestalt(gestaltSpeechAttr, myFeature);

IF (myErr = noErr) AND (BTst(myFeature, gestaltSpeechMgrPresent)) THEN

BEGIN

myErr := SpeakString('The Speech Manager is working and');

{Wait until synthesizer is done speaking.}

WHILE (SpeechBusy <> 0) DO

BEGIN {do nothing}

END;

myErr := SpeakString('is almost done.');

{Wait until synthesizer is done speaking.}

WHILE (SpeechBusy <> 0) DO

BEGIN {do nothing}

END;

MySpeechMgrPresent := myErr;

END;

END;

The MySpeechMgrPresent function defined in Listing 4-1 uses the Gestalt function
to determine whether the Speech Manager is available. The MySpeechMgrPresent
4-12 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
function tests the gestaltSpeechMgrPresent bit, and, if the Speech Manager
is present, the MySpeechMgrPresent function speaks the string passed to the
SpeakString function. If the Gestalt function cannot obtain the desired information
and returns a result code other than noErr, the MySpeechMgrPresent function
assumes that the Speech Manager is not available.

The SpeakString function uses an implied speech channel, that is, the speech channel
is automatically created and disposed of by the Speech Manager. The SpeakString
function is useful when you need to synthesize Pascal-style strings of fewer than
256 characters. If you need to process text that is longer than 255 characters, then you
must allocate a speech channel and use one of the routines that can generate speech in
a channel such as the SpeakText or SpeakBuffer function. These routines are much
more flexible in that they allow you to speak more text, customize the speech using
speech selectors, or alter the generated speech by changing its modulation, pitch, rate,
or voice.

Creating, Using, and Disposing of a Speech Channel 4
To take advantage of most of the Speech Manager’s capabilities, you must pass a speech
channel to Speech Manager functions. You use the NewSpeechChannel function to
create a speech channel. After you are done using a speech channel, you must dispose of
it by using the DisposeSpeechChannel function. Listing 4-2 shows how to create a
speech channel, start speaking text with the SpeakText function, stop speaking text
with the StopSpeech function, and then dispose of the speech channel when the
speaking is finished.

Listing 4-2 Speaking text with a speech channel

FUNCTION MyUseSpeechChannel: OSErr;

VAR

myErr: OSErr;

myErr2: OSErr;

myStr: Str255; {text to be spoken}

BEGIN

myStr := 'Hold the mouse button down to stop speech.';

myErr := NewSpeechChannel(NIL, gChannel); {create the channel}

IF (myErr = noErr) THEN

BEGIN {speak the string}

myErr := SpeakText(gChannel, @myStr[1], Length(myStr));

WHILE (SpeechBusy <> 0) DO {wait until speaking is done}

BEGIN

IF (Button) THEN

myErr := StopSpeech(gChannel); {stop speech at mouse down}

END;

IF (gChannel <> NIL) THEN
Using the Speech Manager 4-13

C H A P T E R 4

Speech Manager
myErr2 := DisposeSpeechChannel(gChannel);{get rid of channel}

END;

IF (myErr = noErr) THEN

MyUseSpeechChannel := myErr2

ELSE

MyUseSpeechChannel := myErr;

END;

The MyUseSpeechChannel function defined in Listing 4-2 creates a default speech
channel using the default system voice. You pass NIL in the first parameter to use the
system default voice. You must also pass a global variable to NewSpeechChannel in
which is returned a valid speech channel. Once the channel exists, then you can use the
SpeakText function to generate speech. To generate synthesized speech, you pass in the
channel allocated by NewSpeechChannel in the first parameter, and then you pass a
pointer to the text that you want to speak as well as the length of the text that you want
the Speech Manager to attempt to speak. That is, you can pass a pointer to a buffer of
text that is 500 bytes long, but specify that only the first 10 bytes get spoken. Then
MyUseSpeechChannel uses the SpeechBusy function in a WHILE loop to allow the
text to be completely spoken before disposing of the channel.

When the designated action to stop the speaking occurs, which in this example is the
user pressing the mouse button, MyUseSpeechChannel halts speech production. In this
case, the StopSpeech function stops the speech immediately (as soon as the synthesizer
can). You need to pass StopSpeech the variable that identifies the channel on which the
speech is currently being synthesized. If you want to have more control over when the
speech is stopped, you can use the StopSpeechAt function, which allows you to stop
speech immediately, at the end of a word, or at the end of a sentence. See the description
of the StopSpeechAt function on page 4-60 for more information.

Once you are done using the speech channel that was created with
NewSpeechChannel, you must dispose of it. The MyUseSpeechChannel function
calls DisposeSpeechChannel with the global variable that identifies the channel
currently in use.

Working With Different Voices 4
When you work with speech channels, you can set a voice for a particular channel.
When you set a voice, you may want to filter out certain of its characteristics in order to
identify the one you want. For example, in an educational software application for
elementary school students, you may want to use only children’s voices. In order to
choose the voice you want, you get a voice description record that contains information
about a voice such as the size of the voice, the name of the voice, the age and gender of
the voice, and the synthesizer with which it works. You can get the number of available
voices using the CountVoices function. You can cycle through the available voices and
identify the one you want to use by using the GetIndVoice function. Then you fill out
a voice description record using the GetVoiceDescription function. Listing 4-3
shows how to get identifying information about a voice.
4-14 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Listing 4-3 Getting a description of a voice

FUNCTION MyInstallBoysVoice: OSErr;

VAR

myErr: OSErr;

myIndex: Integer;

myNumVoices: Integer;

myVoice: VoiceSpec;

myFound: VoiceSpec;

myInfo: VoiceDescription;

BEGIN

myFound := NIL;

myErr := CountVoices(myNumVoices); {count voices}

IF myErr = noErr THEN

BEGIN

FOR myIndex := 0 to myNumVoices DO {loop through all voices}

BEGIN

myErr := GetIndVoice(myIndex, @myVoice);

IF myErr = noErr THEN

BEGIN

myErr := GetVoiceDescription(@myVoice, @myInfo, sizeof(myInfo));

IF myErr = noErr THEN {check if a boy's voice}

IF (myVoice.age < 16) AND (myVoice.gender = kMale) THEN

myFound := myVoice;

END;

END; {FOR}

IF myFound <> NIL THEN {install boy's voice}

myErr := NewSpeechChannel(@myFound, gChannel);

END;

MyInstallBoysVoice := myErr; {return result code}

END;

The MyGetVoiceInfo function checks to see how many voices are available. Once you
have identified the list of available voices, you can index through the voices to select one
about which you want to get information. You pass the number of the voice index in the
first parameter of the GetIndVoice function. (This number cannot be larger than the
number of voices.) GetIndVoice returns a voice specification record in the location
specified in the second parameter— in this case, in the location of the pointer @myVoice.
This sample cycles through the available voices looking for a male child’s voice.

The voice specification record contains two identifiers: the creator identification
of the required synthesizer and the voice identification of the voice.In order to
get specific information about the voice you want to use, you need to call the
GetVoiceDescription function. You need to pass a pointer to the voice specification
record in the first parameter of the GetVoiceDescription function.
Using the Speech Manager 4-15

C H A P T E R 4

Speech Manager
GetVoiceDescription returns the voice description record in the location pointed to
in the second parameter, @info. The voice description record contains information
about the voice such as its age or gender.

To specify which voice you want to use, you pass a pointer to the voice specification
record as the first parameter to NewSpeechChannel. In this case, when the male child’s
voice is identified, it’s voice specification record is passed to NewSpeechChannel,
which allocates a channel with the specified voice. Note that this sample code contains
limited error checking.

Adjusting Speech Attributes 4
Speech attributes are settings defined for a class of voices or for all voices that affect the
quality of speech produced by the Speech Manager. In general, an application should not
try to second-guess the developers of a voice or synthesizer by arbitrarily setting a
speech attribute. However, there are some cases in which you would want to adjust
the rate of speech (how many words per minute are spoken) or the speech pitch (the
listener’s subjective interpretation of speech’s average frequency). Listing 4-4 shows how
to adjust the speech pitch and speech rate of a particular channel.

Listing 4-4 Changing the speech rate and pitch

FUNCTION MyAdjustSpeechAttributes: OSErr;

VAR

myErr: OSErr;

myErr2: OSErr;

myPitch: Fixed;

myRate: Fixed;

myStr: Str255;

BEGIN

myStr := 'This is the old pitch and rate.';

myErr := NewSpeechChannel(NIL, gChannel); {allocate a channel}

IF myErr = noErr THEN

 BEGIN {speak a string}

myErr := SpeakText(gChannel, @myStr[1], Length(myStr));

WHILE (SpeechBusy <> 0) DO {wait for speech to finish}

BEGIN

END;

{Find the current speech pitch.}

myErr := GetSpeechPitch(gChannel, @myPitch);

myPitch := myPitch * 2; {double the pitch}

IF myErr = noErr THEN

myErr := SetSpeechPitch(gChannel, myPitch); {change the pitch}
4-16 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
{Find the current speech rate.}

IF myErr = noErr THEN

myErr := GetSpeechRate(gChannel, @myRate);

myRate := myRate * 2; {double the rate}

IF myErr = noErr THEN

myErr := SetSpeechRate(gChannel, myRate); {change the rate}

{Speak a string with new attributes.}

myStr := 'This is the new pitch and rate.';

myErr := SpeakText(gChannel, @myStr[1], Length(myStr));

WHILE (SpeechBusy <> 0) DO {wait for speech to finish}

BEGIN

END;

{Dispose of the speech channel.}

IF gChannel <> NIL THEN

myErr2 := DisposeSpeechChannel(gChannel);

END;

IF myErr = noErr THEN

MyAdjustSpeechAttributes := myErr2

ELSE

MyAdjustSpeechAttributes := myErr;

END;

The MyAdjustSpeechAttributes function first allocates a speech channel, as
demonstrated previously. Then the MyAdjustSpeechAttributes function speaks a
string to demonstrate the default speech rate and pitch for the default system voice.
After the speech synthesis is finished, MyAdjustSpeechAttributes calls the
GetSpeechPitch function with a valid speech channel and a pointer to a
fixed-point value in which the value of the current speech pitch is returned. Then
MyAdjustSpeechAttributes doubles the value of the speech pitch by multiplying
and passes the new value to the SetSpeechPitch function.

MyAdjustSpeechAttributes repeats this sequence to determine the speech rate
using the GetSpeechRate function, doubles the rate, and sets a new speech rate
by passing the new rate value to the SetSpeechRate function. Next,
MyAdjustSpeechAttributes calls SpeakText again to demonstrate the new
speech pitch and rate. Creating a loop with the SpeechBusy function allows the
synthesizer to finish speaking its text, and then MyAdjustSpeechAttributes
disposes of the active channel.

When you set a rate value, each synthesizer may or may not be able to support that exact
value. A synthesizer will attempt to set the value you specify, but it may substitute a
value that it can support that is the closest it can come to your value. Don’t be alarmed if
GetSpeechRate returns a value other than the one you thought you set. The value
returned is the closest value to the one set that the synthesizer is capable of reproducing.
Using the Speech Manager 4-17

C H A P T E R 4

Speech Manager
Pausing Speech 4
When you start synthesizing speech, you may need a way to stop speech that is being
generated. For example, your application might support a Stop Speech menu command
to let users stop speech when they want to. Also, you should usually stop speech when
you receive a suspend event. You can use StopSpeech to stop speech immediately, or
you can use StopSpeechAt to choose exactly where you want speech stopped. You can
also stop speech temporarily and then resume it again using the PauseSpeechAt and
ContinueSpeech functions. Listing 4-5 shows how you might do this.

Listing 4-5 Pausing and continuing speech production

FUNCTION MyPauseAndContinueSpeech: OSErr;

VAR

myErr, myErr2: OSErr;

myStr: Str255;

BEGIN

gChannel := NIL;

myStr := 'Hold the mouse button down to test pause speech at immediate.';

myErr := NewSpeechChannel(NIL, gChannel); {open speech channel}

IF myErr = noErr THEN

BEGIN {speak some text}

myErr := SpeakText(gChannel, @myStr[1], Length(myStr));

WHILE (SpeechBusy <> 0) DO {wait for speech to finish}

IF (Button) THEN

BEGIN {stop speech immediately}

myErr := PauseSpeechAt(gChannel, kImmediate);

IF myErr = noErr THEN

WHILE (Button) DO {while mouse button is down, do nothing}

BEGIN

END; {on mouse up, resume speaking}

myErr := ContinueSpeech(gChannel);

END;

IF gChannel <> NIL THEN {dispose of channel}

myErr2 := DisposeSpeechChannel(gChannel);

END;

IF myErr = noErr THEN

MyPauseAndContinueSpeech := myErr2

ELSE

MyPauseAndContinueSpeech := myErr;

END;

The MyPauseAndContinueSpeech function defined in Listing 4-5 begins by allocating
a speech channel using the default system voice. It then begins to speak some text.
4-18 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
MyPauseAndContinueSpeech uses a busy loop to allow the speech to be completely
spoken before finishing the subroutine. Then, when the designated action occurs, in this
case the mouse button being depressed by a user, MyPauseAndContinueSpeech calls
PauseSpeechAt with the currently active channel and a constant that defines where to
stop the speech. This example uses the constant kImmediate to indicate that the speech
should cease wherever it us currently being processed by the synthesizer. There are also
constants that define the end of a word and the end of a sentence as appropriate
stopping places.

When the mouse button is released, MyPauseAndContinueSpeech calls the
ContinueSpeech function with the variable identifying the paused speech channel.
When paused immediately, the synthesizer resumes speaking at the beginning of
the word that was interrupted. While the speech is being generated,
MyPauseAndContinueSpeech continues to call SpeechBusy to determine if
the channel is still being used to process speech. When the channel is no longer
busy, MyPauseAndContinueSpeech calls DisposeSpeechChannel to release the
memory used by the speech channel.

Implementing Callback Procedures 4
The Speech Manager makes it easy for you to synchronize other activities to speech
generation by allowing you to install various types of callback procedures on a speech
channel. A callback procedure is a procedure that executes whenever a certain type of
event is about to occur or has occurred. For example, you might use a word callback
procedure to ensure that whenever the Speech Manager is about to speak a word, the
word is visible onscreen. Callback procedures also allow you to synchronize more
mundane activities with the Speech Manager; for example, you might need to know
when you can dispose of a certain text buffer that you had asked the Speech Manager
to speak. This section provides an overview of the different callback procedures that you
can define.

The soTextDoneCallBack and soSpeechDoneCallBack speech information
selectors allow you to designate text-done and speech-done callback procedures. A
text-done callback procedure executes whenever the Speech Manager finishes
processing a buffer of text to be spoken. This procedure usually executes before the
Speech Manager has finished generating speech from the text and indeed often before
it has started. The text-done callback procedure provides a mechanism that allows you to
specify to the Speech Manager an additional buffer of text to be spoken, so that speech
is generated continuously. Once your text-done callback procedure executes, you can
release the memory occupied by the text buffer processed. A speech-done callback
procedure does not execute until after the Speech Manager has completed generating
speech from a buffer of text.

If your application uses or supports embedded speech commands, it may need to use the
soSyncCallBack and soErrorCallBack speech information selectors to designate a
synchronization callback procedure or an error callback procedure. A synchronization
callback procedure executes whenever the Speech Manager encounters a
synchronization command embedded within a text buffer to be spoken.
Using the Speech Manager 4-19

C H A P T E R 4

Speech Manager
An error callback procedure executes whenever the Speech Manager encounters an
error when attempting to process an embedded speech command. The Speech Manager
passes information about the synchronization message or type of error to your callback
procedure. If your application does not use synchronization or error callback procedures,
it can obtain information about synchronization or error messages by continually polling
the speech channel by using the GetSpeechInfo function with the soErrors or
soRecentSync selectors.

The soPhonemeCallBack and soWordCallBack speech information selectors allow
you to designate a phoneme callback procedure and a word callback procedure,
respectively. A phoneme callback procedure executes whenever a phoneme is about to
be spoken on a speech channel. A word callback procedure executes whenever a word is
about to be spoken on a speech channel.

Since callback procedures execute at interrupt time they face several restrictions, as
discussed in detail in Inside Macintosh: Processes. Most significantly, your callback
procedure must not allocate or move memory or call any Toolbox or Operating System
routine that might do so. Thus, typically a callback procedure simply sets a flag variable;
for example, a phoneme callback procedure might change a variable that indicates which
phoneme is being spoken. Your application can then poll this flag variable each time
through its main event loop and perform whatever activity is desired if it finds that the
flag variable has changed. Remember to design callback procedures to execute quickly.

Because they execute at interrupt time, callback procedures also cannot access
application global variables unless the A5 register contains the value of the application’s
A5, as discussed in Inside Macintosh: Memory. Fortunately, the Speech Manager provides a
mechanism that makes it easy to ensure that A5 is set correctly. Your application can call
the SetSpeechInfo function with the soCurrentA5 selector to pass the application’s
A5 in the speechInfo parameter to the Speech Manager. The Speech Manager will then
set the A5 register to the passed value whenever it executes an application-defined
callback procedure for that speech channel.

Sometimes your application might wish to provide a callback procedure with additional
information beyond that which can be provided by examining application global
variables. For example, a callback procedure might need to know from which document
speech is being generated. Your application can use the SetSpeechInfo function with
the soRefCon selector to specify a 4-byte reference constant value—for example, a
handle to a document record—that the Speech Manager passes to all callback procedures
on a particular speech channel. Your application can use the same callback procedure on
multiple speech channels, for each of which the Speech Manager can pass a different
value to the callback procedure. Thus, as long as your application never uses a single
speech channel to generate speech on multiple documents simultaneously, it can use the
reference constant value mechanism to pass document-specific information to a callback
procedure. Typically, you use the reference constant to contain a pointer or handle to
more extensive information that the callback procedure would require.

Listing 4-6 shows how you can indicate to the Speech Manager both the value to which it
should set the A5 register when it executes a callback procedure on a particular speech
channel and the reference constant value to pass to that callback procedure.
4-20 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Listing 4-6 Setting up a speech channel for callbacks

FUNCTION MySetupCallbacks (chan: SpeechChannel; refCon: LongInt): OSErr;

VAR

myA5: LongInt; {application's A5}

myErr: OSErr;

BEGIN

myA5 := SetCurrentA5; {get application's A5}

{Pass A5 value to speech channel.}

myErr := SetSpeechInfo(chan, soCurrentA5, Ptr(myA5));

IF myErr = noErr THEN {set the reference constant}

myErr := SetSpeechInfo(chan, soRefCon, Ptr(refCon));

MySetupCallbacks := myErr;

END;

The MySetupCallbacks function defined in Listing 4-6 uses the SetSpeechInfo
function with both the soCurrentA5 and the soRefCon selectors to prepare a specific
speech channel for callbacks. Note that your application can call MySetupCallbacks as
many times as desired for any particular speech channel; you might do this if you want
to change the reference constant value to be passed to the speech channel.

Unlike other selectors, the soCurrentA5 and soRefCon selectors do not require that
you pass a pointer to the information you are specifying in the speechInfo parameter.
Because an application’s A5 value and a speech channel’s reference constant value are
always each 4 bytes long (the same size as the speechInfo parameter), your
application passes these values directly, casting them to pointer values.

After your application sets up the A5 register and defines a reference constant value, it
can install the appropriate type or types of callback procedure. Listing 4-7 shows how
you might install a word callback procedure.

Listing 4-7 Installing a word callback procedure

PROCEDURE MyInstallWordCallback (chan: SpeechChannel; callbackProc: ProcPtr;

refCon: LongInt);

VAR

myErr: OSErr;

BEGIN

myErr := MySetupCallbacks(chan, refCon); {set up callbacks}

myErr := SetSpeechInfo(chan, soWordCallBack, callbackProc);

IF myErr <> noErr THEN

DoError(myErr); {respond to an error}

END;
Using the Speech Manager 4-21

C H A P T E R 4

Speech Manager
The MyInstallWordCallback procedure defined in Listing 4-7 first prepares for
callbacks by calling the MySetupCallbacks function defined in Listing 4-6 for the
speech channel and reference constant value specified by the chan and refCon
parameters, respectively. Then it installs the callback procedure specified by the
callbackProc parameter by using the SetSpeechInfo function with the
soWordCallBack speech information selector. If, for example, you want to pass to
your word callback procedure a pointer to the window containing the document being
used for speech generation, you might call the MyInstallWordCallback procedure
like this:

MyInstallWordCallback(mySpeechChan, @MyWordCallBack, LongInt(myWindow));

Listing 4-8 defines a simple word callback procedure.

Listing 4-8 A typical word callback procedure

PROCEDURE MyWordCallback (chan: SpeechChannel; refCon: LongInt;

wordPos: LongInt; wordLen: Integer);

BEGIN

gWindowBeingRead := WindowPtr(refCon);

gWordPos := wordPos;

gWordLen := wordLen;

END;

▲ W A R N I N G

Callback procedures are called at interrupt time and therefore must not
attempt to allocate, move, or dispose of memory; dereference an
unlocked handle; or call other routines that do so. Also, a callback
procedure is a Pascal procedure and must preserve all registers other
than A0–A1 and D0–D2. ▲

Because of the restrictions on callback procedures, a typical callback procedure usually
just sets global flag variables based on the information passed to it. In Listing 4-8, the
callback procedure copies information from the refCon, wordPos, and wordLen
parameters to the three global variables gWindowBeingRead, gWordPos, and
gWordLen. You can then call a routine to check the values of these global variables
once each time through your application’s event loop and respond appropriately if the
gWindowBeingRead global variable is not NIL. (Your application would have to
initialize the variable to NIL.) For example, the routine might ensure that the word about
to be spoken is visible onscreen and scroll the document appropriately if it is not.

Although they have different uses, speech-done callback procedures, synchronization
callback procedures, error callback procedures, and phoneme callback procedures are
typically defined in ways similar to that of the word callback procedure in Listing 4-8.
See “Application-Defined Routines” beginning on page 4-82 for complete information
on callback routines.
4-22 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Text-done callback procedures are usually more complex than the other types. You can
use a text-done callback procedure simply to determine when the Speech Manager has
completed processing a buffer of input text. The callback procedure can just set a global
flag variable that is inspected once each time through the application’s main event loop;
when the flag variable indicates that the input buffer processing is complete, you can
dispose of the input buffer.

Writing Embedded Speech Commands 4
Embedded speech commands allow you to customize the quality of speech output by
fine tuning it. You can make speech much easier to understand than the default way in
which text is spoken by a synthesizer. An embedded speech command is a command
embedded within a text buffer to be spoken by the Speech Manager that causes the
Speech Manager to take a certain action. For example, you could use an embedded
speech command to emphasize a particular word in a text string to make it stand out
to the user.

An advantage of this technique is that your application needs to call only the standard
functions that generate speech: SpeakString, SpeakText, or SpeakBuffer. To
change the way a phrase is generated, you do not need to change any of your
application’s code; you merely need to change the embedded command text. Your
application can also use embedded speech commands even if it speaks text created
by the user, as opposed to a limited set of phrases. Before passing text to the Speech
Manager, your application could embed various commands within the text. For example,
a word-processing application might embed commands that tell the Speech Manager to
put extra emphasis around words that the user has boldfaced or underlined.

Embedded Command Delimiters 4

When processing input text data, speech synthesizers look for special sequences of
characters called command delimiters. These character sequences are usually defined to
be unusual pairings of printable characters that would not normally appear in the text.
When a begin command delimiter string is encountered in the text, the following
characters are assumed to contain one or more commands. The synthesizer will attempt
to parse and process these commands until an end command delimiter string is
encountered. By default, the begin command delimiter string is “[[”, and the end
command delimiter string is “]]”. You can change the command delimiters if necessary,
but you should be sure to use printable characters that are not in common use. Be sure to
change the default delimiters back to the assigned characters when you are done with
the speech processing for which you changed the delimiters. For example, if your
application needs to speak text that naturally contains the default delimiter characters,
then it should temporarily change the delimiters to sequences not included in the text.
Or, if your application does not wish to support embedded speech commands, then it
can disable such processing by setting both the begin command delimiter and the end
command delimiter to 2 NIL bytes.
Using the Speech Manager 4-23

C H A P T E R 4

Speech Manager
Syntax of Embedded Speech Commands 4

This section describes the syntax of embedded speech commands in detail. All
embedded speech commands must be enclosed by the begin command delimiter and
the end command delimiter, as follows:

[[emph +]]

All speech commands require parameters immediately following the speech command.
The parameter to the speech emphasis command above is the plus sign. The format of
the parameter depends on the command issued. Numeric type parameters include
fixed-point numbers, bytes, integers, and 32-bit values. Hexadecimal numbers may be
entered using either Pascal or C syntax; $1A22 and 0x1A22 are both acceptable.

A common type of parameter is an operating-system type parameter, used generally to
specify a particular selector. For example,

[[inpt PHON]]

changes the text-processing mode so that the Speech Manager interprets text to be
composed of phonemes.

Some commands allow you to specify an absolute value by including just a number as
the parameter or to specify a relative value by adding a + or – character. For example,
the following command raises the speech volume by 0.1:

[[volm +0.1]]

Your application can place multiple commands within a single set of delimiters by using
semicolons–for example:

[[volm 0.3 ; rate 165]]

It is suggested that you precede all other embedded speech commands by a format
version command. This command indicates to speech synthesizers the format version to
be used by all subsequent embedded speech commands. The current format version is 1.
You could write a format version command for the current format version like this:

[[vers $00000001]]

Table 4-1 provides a formalization of the embedded command syntax structure, subject
to these conventions:

■ Items enclosed in angle brackets (< and >) represent logical units that either are
defined further below in the table or are atomic units that should be self-explanatory,
in which case the explanations are provided in italic type. All logical units are listed in
the first column.

■ Items enclosed in single brackets ([and]) are optional.

■ Items followed by an ellipsis (…) may be repeated one or more times.

■ For items separated by a vertical bar (|), any one of the listed items may be used.
4-24 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
■ Multiple space characters between tokens may be used if desired.

■ Multiple commands within a single set of parameters should be separated by
semicolons.

Table 4-1 The embedded command syntax structure

Identifier Syntax

CommandBlock <BeginDelimiter> <CommandList> <EndDelimiter>

BeginDelimiter <String1> | <String2>

EndDelimiter <String1> | <String2>

CommandList <Command> [; <Command>]…

Command <CommandSelector> [parameter]…

CommandSelector <OSType>

Parameter <OSType> | <String1> | <String2> | <StringN> |
<FixedPointValue> | <32BitValue> | <16BitValue> | <8BitValue>

String1 <Character>

String2 <Character> <Character>

StringN [<Character>…]

OSType <Character> <Character> <Character> <Character>

32BitValue <OSType> | <LongInt> | <HexLongInt>

16BitValue <Integer> |<HexInteger>

8BitValue <Byte> | <HexByte>

FixedPointValue <Decimal number: 0.0000 ≤ N ≤ 65,535.9999>

LongInt <Decimal number: 0 ≤ N ≤ 4,294,967,295>

HexLongInt <Hex number: 0x00000000 ≤ N ≤ 0xFFFFFFFF>

Integer <Decimal number: 0 ≤ N ≤ 65,535>

HexInteger <Hex number: 0x0000 ≤ N ≤ 0xFFFF>

Character <Any printable character (for example, A, b, *, #, x)>

Byte <Decimal number: 0 ≤ N ≤ 255>

HexByte <Hex number: 0x00 ≤ N ≤ 0xFF>
Using the Speech Manager 4-25

C H A P T E R 4

Speech Manager
Table 4-2 outlines the set of currently defined embedded speech commands in
alphabetical order and uses the same syntax conventions as Table 4-1. Note that when
writing embedded speech commands, you omit the symbols like angle brackets and
ellipses that are used here for explanatory purposes.

Table 4-2 Embedded speech commands

Command and
selector Command syntax and description

Character mode
(char)

char NORM | LTRL

The character mode command sets the word-speaking mode
of the speech channel. When NORM mode is selected, the
synthesizer attempts to automatically convert words into
speech. This is the most basic function of the text-to-speech
synthesizer. When LTRL mode is selected, the synthesizer
speaks every word, number, and symbol character by
character. Embedded command processing continues to
function normally, however.

This embedded speech command is analogous to the
soCharacterMode speech information selector.

Comment (cmnt) cmnt [<Character>…]

The comment command is ignored by speech synthesizers.
It enables a developer to insert a comment that will not be
spoken into a text stream for documentation purposes. Note
that all characters following the cmnt selector up to
<EndDelimiter> are part of the comment.

Delimiter (dlim) dlim <BeginDelimiter> <EndDelimiter>

The delimiter command changes the character sequences that
mark the beginning and end of all subsequent commands to
the character sequences specified. The new delimiters take
effect after the command list containing this command has
been completely processed. If the delimiter strings are empty,
an error is generated.

This embedded speech command is analogous to the
soCommandDelimiter speech information selector.

Emphasis (emph) emph + | -

The emphasis command causes the next word to be spoken
with either greater emphasis or less emphasis than would
normally be used. Using + will force added emphasis, while
using – will force reduced emphasis. For an illustration of
using the emphasis command, see the section “Examples of
Embedded Speech Commands” beginning on page 4-30.
4-26 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Input mode (inpt) inpt | TEXT | PHON

The input mode command switches the input-processing mode
to either normal text mode or phoneme mode. Passing TEXT
sets the mode to text mode; passing PHON sets the mode to
phoneme mode. Some speech synthesizers might define
additional speech input mode selectors. In phoneme mode,
characters are interpreted as representing phonemes, as
described in “Phonemic Representation of Speech” on
page 4-32.

This embedded speech command is analogous to the
soInputMode speech information selector.

Number mode
(nmbr)

nmbr NORM | LTRL

The number mode command sets the number-speaking mode
of the speech synthesizer. When NORM mode is selected, the
synthesizer attempts to automatically speak numeric strings as
intelligently as possible. When LTRL mode is selected, numeric
strings are spoken digit by digit. When the word-speaking
mode is set to literal via the character mode command or the
soCharacterMode speech information selector, numbers are
spoken digit by digit regardless of the current
number-speaking mode.

This embedded speech command is analogous to the
soNumberMode speech information selector.

Baseline pitch
(pbas)

pbas [+ | -] <FixedPointValue>

The baseline pitch command changes the current speech pitch
for the speech channel to the fixed point value specified. If the
pitch number is preceded by a + or – character, the speech
pitch is adjusted relative to its current value. Base pitch values
are always positive numbers in the range from 1.000 to 127.000.

This embedded speech command is analogous to the
soPitchBase speech information selector. For a discussion
of speech pitch, see the section “Speech Attributes” beginning
on page 4-6.

continued

Table 4-2 Embedded speech commands (continued)

Command and
selector Command syntax and description
Using the Speech Manager 4-27

C H A P T E R 4

Speech Manager
Pitch modulation
(pmod)

pmod [+ | -] <FixedPointValue>

The pitch modulation command changes the modulation range
for the speech channel based on the modulation depth
fixed-point value specified. The actual pitch of generated
speech might vary from the baseline pitch up or down as much
as the modulation depth. If the modulation depth number
is preceded by a + or – character, the pitch modulation is
adjusted relative to its current value. Speech pitches fall in the
range of 0.000 to 127.000.

This embedded speech command is analogous to the
soPitchMod speech information selector. For a discussion
of speech pitch, see the section “Speech Attributes” beginning
on page 4-6.

Speech rate (rate) rate [+ | -] <FixedPointValue>

The speech rate command sets the speech rate in words per
minute on the speech channel to the fixed-point value
specified. If the rate value is preceded by a + or – character, the
speech rate is adjusted relative to its current value. Speech
rates fall in the range 0.000 to 65535.999, which translate into 50
to 500 words per minute. Normal human speech rates are
around 180 to 220 words per minute.

This embedded speech command is analogous to the soRate
speech information selector. For a discussion of speech rate, see
the section “Speech Attributes” beginning on page 4-6.

Reset (rset) rset <32BitValue>

The reset command will reset the speech channel’s voice and
speech attributes back to default values. The parameter has no
effect; it should be set to 0.

This embedded speech command is analogous to the soReset
speech information selector.

Silence (slnc) slnc <32BitValue>

The silence command causes the synthesizer to generate
silence for the number of milliseconds specified. The timing
of the silence will vary widely between synthesizers. For an
illustration of using the silence command, see the section
“Examples of Embedded Speech Commands” beginning on
page 4-30.

Table 4-2 Embedded speech commands (continued)

Command and
selector Command syntax and description
4-28 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
While embedded speech commands are being processed, several types of errors might
be detected and reported to your application. If you have enabled error callbacks by

Synchronization
(sync)

sync <32BitValue>

The synchronization command causes the application’s
synchronization callback procedure to be executed. The
callback is made as the audio corresponding to the next word
begins to sound. The callback procedure is passed the 32-bit
value specified in the command. Synchronization callback
procedures are described in “Synchronization Callback
Procedure” beginning on page 4-85.

Format version
(vers)

vers <32BitValue>

The format version command informs the speech synthesizer
of the format version that subsequent embedded speech
commands will use. This command is optional but is
recommended to ensure that embedded speech commands
are compatible with all versions of the Speech Manager.
The current format version is $0001.

Speech volume
(volm)

volm [+ | -] <FixedPointValue>

The speech volume command changes the speech volume on
the speech channel to the fixed-point value specified. If the
volume value is preceded by a + or – character, the speech
volume is adjusted relative to its current value. Volumes are
expressed in fixed-point units ranging from 0.000 through
1.000. A value of 0.0 corresponds to silence, and a value of 1.0
corresponds to the maximum possible volume. Volume units
lie on a scale that is linear with amplitude or voltage. A
doubling of perceived loudness corresponds to a doubling of
the volume.

This embedded speech command is analogous to the
soVolume speech information selector.

Synthesizer-specific
(xtnd)

xtnd <OSType> [<Parameter>…]

The synthesizer-specific command enables synthesizer-specific
commands to be embedded in the input text stream.
Synthesizer-specific speech commands are processed by the
speech synthesizer whose creator ID is specified in the first
parameter and by other speech synthesizers that support
commands aimed at the synthesizer with the specified creator
ID. The format of the data following the parameter is entirely
dependent on the synthesizer being used.

This embedded speech command is analogous to the
soSynthExtension speech information selector, described
in “Speech Information Selectors” beginning on page 4-39.

Table 4-2 Embedded speech commands (continued)

Command and
selector Command syntax and description
Using the Speech Manager 4-29

C H A P T E R 4

Speech Manager
using the SetSpeechInfo function with the soErrorCallBack selector, the error
callback procedure will be executed once for every error that is detected, as described in
“Error Callback Procedure” beginning on page 4-86. If you have not enabled error
callbacks, you can still obtain information about the errors encountered by calling the
GetSpeechInfo function with the soErrors selector. The following errors might be
detected during processing of embedded speech commands:

Examples of Embedded Speech Commands 4

If you use just a few of the embedded speech commands, you can markedly increase the
understandability of text spoken by your application. Your application knows more
about the speech being produced than a speech synthesizer does. A synthesizer speaks
text according to a predetermined set of rules about language production. Therefore, the
voices available on a Macintosh computer with the Speech Manager installed sound very
synthetic and sometimes robotic because the pronunciation rules are formalized. You can
make the speech produced by the synthesizer sound a lot more human by observing
some simple rules of human speech and embedding speech commands in text according
to these conventions. The techniques presented in this section could be applied when
your application is having a dialog with the user or speaking some error messages or
announcements.

The most common technique humans use in speaking is to emphasizing or
deemphasizing words in a sentence. This change in emphasis marks for the listener
new and important information by highlighting it vocally, making it easier for the
listener to recognize important or different words in a sentence. For example, in a
calendar-scheduling program, your application might speak a list of appointments for a
day. The following text strings would all be spoken with the same tune and rhythm.

At 4pm you have a meeting with Kim Silver.

At 6pm you have a meeting with Tim Johnson.

At 7pm you have a meeting with Mark Smith.

The example that follows shows how you use embedded speech commands to
deemphasize repeated words in similar sentences and highlight new information in a
sentence. The first sentence of the following example sounds fairly acceptable. The
second sentence deemphasizes the repeated words have and meeting to point out the new
information—with whom the meeting is. The choice of which words to emphasize or
deemphasize is based on what was spoken in the preceding sentence.To use the
embedded command emph (emphasis), you insert it followed by a plus or minus sign
before the word you want emphasized or deemphasized. The emph command lasts for
a duration of one word.

badParmVal –245 Parameter value is invalid
badCmdText –246 Embedded command syntax or parameter problem
unimplCmd –247 Embedded command is not implemented on synthesizer
unimplMsg –248 Unimplemented message
badVoiceID –250 Specified voice has not been preloaded
badParmCount –252 Incorrect number of embedded command arguments
4-30 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
At 4:15 you have a meeting with Ray Chiang.

At 6:30, you [[emph -]] have a [[emph -]] meeting with

William Ortiz.

At 7pm, you [[emph -]] have a [[emph -]] meeting with

Eric Braz Ford.

As shown in the next example, you can further enhance this text by spelling out the
numbers so that you can emphasize changes in increments of time. For example, the
following sentences deemphasize the repeated word six to highlight the difference
between the meetings; which both occur between six and seven o’clock.

At four fifteen you have a meeting with Lori Kaplan.

At six [[emph -]] fifteen, you [[emph -]] have a [[emph -]]

meeting with Tim Monroe.

At [[emph -]] six thirty, you [[emph -]] have a [[emph -]]

meeting with Michael Abrams.

Another use of the emphasis embedded command is to make confusing, boring, or
mechanical sounding text more understandable. One example of this is strings of nouns
that refer to one entity (called complex nominals) that when spoken differently have a
different meeting.

1a. Steel warehouse.

1b. Steel [[emph -]] warehouse.

2a. French teachers.

2b. French [[emph -]] teachers.

In the first example, phrase 1a, steel warehouse, refers to a warehouse made of steel, in
which anything could be stored. But phrase 1b describes a warehouse of unspecified
construction in which steel is stored. In the second example, phrase 2a, French teachers,
refers to teachers from France who teach any subject. In the same example, phrase 2b
specifies people from anywhere who teach French classes. You can use this technique of
deemphasizing words in phrases to help users correctly understand the meaning of text
spoken from your application.

You use the emph command to emphasize words in order to contrast them. You
contrast words that are similar to words found later in a sentence to help distinguish
new information.

You have [[emph +]] 3 text [[emph -]] messages, two fax [[emph

-]] messages, and [[emph +]] one [[emph +]] voice [[emph -]]

message.

This example emphasizes the words related to the number of messages and type of
messages to help the listener discern the different kinds of information being presented.
Using the Speech Manager 4-31

C H A P T E R 4

Speech Manager
Another common speaking technique that humans use is to pause before starting to
speak about a new idea or before beginning a new paragraph. Adding an slnc (silence)
command before beginning to speak a new idea or paragraph makes the synthetic voice
sound like a person does when taking a breath in between ideas. This technique works
best if you also raise the pitch range (using the pmod and pbas embedded commands) of
the first sentence of the new paragraph. You must remember to lower the pitch range to
achieve the desired effect.

[[emph -; pmod +1; pbas +1]] Good morning! [[pmod -1; pbas -1]]

This is a [[emph +]] newer [[emph -]] version of Apple's speech

synthesis. The previous [[emph -]] version has already been

[[emph -]] adopted by many developers. Users have sent us many

positive [[emph +]] reports.

[[slnc 500; pmod +1; pbas +1]]

This newer [[emph -]] version has better signal [[emph -]]

processing [[pmod -1; pbas -1]], new pitch [[emph -]] contours,

and a new compression. It still doesn't [[emph -]] sound perfect,

but people find it easier to understand.

This example deemphasizes the first word of the utterance, but raises the pitch to make
the greeting sound more like a human would speak it. Then words are emphasized or
deemphasized according to the techniques discussed previously. Silence is introduced
before the new paragraph to signal a change in thought process. The pitch is raised and
then lowered again after the first phrase. Note that you don’t have to wait a full sentence
before changing the pitch back to its previous value. It’s best to work with these
techniques until you find the most human-sounding utterances.

Phonemic Representation of Speech 4
The Speech Manager allows your application to process text phonemically. If your
application speaks only text that the user writes, this feature is unlikely to be useful to
you, because you cannot anticipate what the user might enter. However, if there are a
few or many sentences that your application frequently converts into speech, it might be
useful to represent parts of these sentences phonemically rather than textually.

It might be useful to convert your text into phonemes during application development in
order to be able to reduce the amount of memory required to speak. If your application
does not require the text-to-phoneme conversion portion of the speech synthesizer,
significantly less RAM might be required to speak with some synthesizers.

Additionally, you might be able to use a higher quality text-to-phoneme conversion
process (even one that does not work in real time) to generate precise phonemic
information. This data can then be used with any speech synthesizer to produce better
speech. For example, you might convert textual to phonemic data on a future version of
the Speech Manager that performs such conversions more accurately than the Speech
Manager currently does; that phonemic data could then be used to generate speech with
4-32 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
any version of the Speech Manager. The Speech Manager’s TextToPhonemes function
provides an easy method for converting text into its default phonemic equivalent.

To help the Speech Manager differentiate a textual representation of a word from a
phonemic representation, you must embed commands in text that inform the Speech
Manager to change into a mode in which it interprets a buffer of text as a phonemic
representation of speech, in which particular combinations of letters represent particular
phonemes. (You can also use the SetSpeechInfo function to change to phoneme
mode.) To indicate to the Speech Manager that subsequent text is a phonemic
representation of text to be spoken, embed the [[inpt PHON]] command within
a string or buffer that your application passes to one of the SpeakString, SpeakText,
or SpeakBuffer functions. To indicate that the Speech Manager should revert to textual
interpretation of a text buffer, embed the [[inpt TEXT]] command. For example,
passing the string

Hello, I am [[inpt PHON]]mAYkAXl[[inpt TEXT]], the talking

computer.

to SpeakString, SpeakText, or SpeakBuffer would result in the generation of the
sentence, “Hello, I am Michael, the talking computer.”

Some, but not all, speech synthesizers allow you to embed a command that causes the
Speech Manager to interpret a buffer of text as a series of allophones.

Phonemic Symbols 4

Table 4-3 summarizes the set of standard phonemes recognized by American English
speech synthesizers. Other languages and dialects require different phoneme
inventories. Phonemes divide into two groups: vowels and consonants. All vowel
symbols are pairs of uppercase letters. For simple consonants the symbol is that
lowercase consonant; for blends and complex consonants, the symbol is in uppercase.
Within the example words, the individual sounds being exemplified appear in boldface.

Table 4-3 American English phoneme symbols

Symbol Example Opcode Symbol Example Opcode

% silence 0 D them 21

@ breath intake 1 f fin 22

AE bat 2 g gain 23

EY bait 3 h hat 24

AO caught 4 J jump 25

AX about 5 k kin 26

IY beet 6 l limb 27

EH bet 7 m mat 28

continued
Using the Speech Manager 4-33

C H A P T E R 4

Speech Manager
You can obtain information similar to that in Table 4-3 for whatever language a
synthesizer supports by using the GetSpeechInfo function on a channel using the
synthesizer with the soPhonemeSymbols selector. The information is returned in a
phoneme descriptor record, whose structure is described on page 4-53.

Prosodic Control Symbols 4

The symbols listed in Table 4-4 are recognized as modifiers to the basic phonemes
described in the preceding section. You can use them to more precisely control the
quality of speech that is described in terms of raw phonemes.

IH bit 8 n nat 29

AY bite 9 N tang 30

IX roses 10 p pin 31

AA cot 11 r ran 32

UW boot 12 s sin 33

UH book 13 S shin 34

UX bud 14 t tin 35

OW boat 15 T thin 36

AW bout 16 v van 37

OY boy 17 w wet 38

b bin 18 y yet 39

C chin 19 z zen 40

d din 20 Z measure 41

Table 4-4 Prosodic control symbols

Type Symbol Symbol name Description or illustration of effect

Lexical stress: Marks stress within a word (optional)

 Primary stress 1 AEnt2IHsIXp1EYSAXn (“anticipation”)

 Secondary stress 2

Syllable breaks: Marks syllable breaks within a word (optional)

 Syllable mark = (equal) AEn=t2IH=sIX=p1EY=SAXn (“an-ti-ci-pa-tion”)

Word prominence: Placed before the affected word

 Destressed ~ (asciitilde) Used for words with minimal informational
content

Table 4-3 American English phoneme symbols (continued)

Symbol Example Opcode Symbol Example Opcode
4-34 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Note
Like all other phonemes, the “silence” phoneme (%) and the “breath
intake” phoneme (@) can be lengthened or shortened using the > and <
symbols. ◆

The prosodic control symbols (/, \, <, and >) can be concatenated to provide
exaggerated or cumulative effects. The specific nature of the effect is dependent on
the speech synthesizer. Speech synthesizers also often extend or enhance the controls
described in the table.

Table 4-5 indicates the effect of punctuation marks on sentence prosody. In particular, the
table shows the effect of punctuation marks on speech pitch and indicates to what extent
the punctuation marks cause a pause. Note that because some languages might not use
these punctuation marks, some synthesizers might not interpret them correctly. In
general, speech synthesizers strive to mimic the pauses and changes in pitch of actual
speakers in response to punctuation marks, so to obtain best results, you can punctuate
according to standard grammatical rules.

 Normal stress _ (underscore) Used for information-bearing words

 Emphatic stress + (plus) Used for words requiring special emphasis

Prosodic: Placed before the affected phoneme

 Pitch rise / (slash) Pitch will rise on the following phoneme

 Pitch fall \ (backslash) Pitch will fall on the following phoneme

 Lengthen
 phoneme

> (greater) Lengthens the duration of the following phoneme

 Shorten phoneme < (less) Shortens the duration of the following phoneme

Table 4-5 Effect of punctuation marks on English-language synthesizers

Symbol Symbol name Effect of punctuation mark Effect on Timing

& (ampersand) Forces no addition of silence
between phonemes

No additional effect

: (colon) End of clause, no change in pitch Short pause follows

, (comma) Continuation rise in pitch Short pause follows

… (ellipsis) End of clause, no change in pitch Pause follows

! (exclam) End-of-sentence sharp fall in pitch Pause follows

- (hyphen) End of clause, no change in pitch Short pause follows

((parenleft) Start reduced pitch range Short pause precedes

continued

Table 4-4 Prosodic control symbols (continued)

Type Symbol Symbol name Description or illustration of effect
Using the Speech Manager 4-35

C H A P T E R 4

Speech Manager
Specific pitch contours associated with these punctuation marks might vary according to
other considerations in the analysis of the text. For example, if a question is rhetorical or
begins with a word recognized by the synthesizer to be a question word, the pitch might
fall at the question mark. Consequently the above effects should be regarded as only
guidelines and not absolute. This also applies to the timing effects, which will vary
according to the current rate setting.

Including Pronunciation Dictionaries 4
No matter how sophisticated a speech synthesis system is, there will always be words
that it does not automatically pronounce correctly. A clear instance of words that are
often mispronounced is the class of proper nouns (names of people, place names, and so
on). The Speech Manager supports pronunciation dictionaries which allow applications
to override the default pronunciations of words. A pronunciation dictionary is a list
of words along with their associated pronunciations stored in a resource of resource
type 'dict'.

The application is free to store dictionaries in either the resource fork or the data fork of a
file. The application is responsible for loading the individual dictionaries into RAM and
then passing a handle to the dictionary data to the Speech Manager. The initial release of
the Speech Manager, however, does not include any routines that can add entries to
dictionaries or manipulate them in other ways. The Speech Manager does include a
routine, the UseDictionary function, that you can use to install one or more
pronunciation dictionaries in a speech channel.

 A multimedia application might store such a pronunciation dictionary resource in its
own resource fork to specify the pronunciations of selected words used in a narration.
A word-processing application, meanwhile, could allow a user to add words to a
pronunciation dictionary stored in the resource fork of a text file. Or, a text-services
application dedicated to speech generation might include large specialized dictionaries—
for example, of medical terms—to specify pronunciation of words in particular subject

) (parenright) End reduced pitch range Short pause follows

. (period) End-of-sentence fall in pitch Pause follows

? (question) End-of-sentence rise in pitch Pause follows

“
‘

(quotedblleft,
quotesingleleft)

Varies depending on context Varies

”
’

(quotedblright,
quotesingleright)

Varies depending on context Varies

; (semicolon) Continuation rise in pitch Short pause follows

Table 4-5 Effect of punctuation marks on English-language synthesizers (continued)

Symbol Symbol name Effect of punctuation mark Effect on Timing
4-36 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
areas. Because the Speech Manager allows your application to install as many
pronunciation dictionaries as desired in a speech channel, it can use pronunciation
dictionaries in one or more of these ways.

Note
The Dictionary Manager, described in Inside Macintosh: Text, cannot be
used with pronunciation dictionaries. ◆

Whenever a speech synthesizer needs to determine the proper phonemic representation
for a particular word, it first looks for the word in its pronunciation dictionaries.
Pronunciation dictionary entries contain information that enables precise conversion
between text and the correct phoneme codes, as described in “Phonemic Representation
of Speech” beginning on page 4-32. Pronunciation dictionary entries also provide stress,
intonation, and other information to help speech synthesizers produce more natural
speech, as described in “Prosodic Control Symbols” beginning on page 4-34. Note that
you cannot use punctuation marks (as described in Table 4-5) in pronunciation
dictionaries.

A single pronunciation dictionary entry cannot be used to specify the pronunciation of
an entire phrase, because the Speech Manager checks its pronunciation dictionary on a
word-by-word basis. Thus, the textual portion of a pronunciation dictionary entry must
not contain any spaces.

If the pronunciation dictionaries installed in a speech channel do not include an
indication of how a word should be pronounced, then the Speech Manager uses its own
pronunciation rules and internal dictionary to pronounce the words. In general, you
need to create a dictionary only for unusual words that your application requires but the
Speech Manager ordinarily pronounces incorrectly. You might also allow a user who is
not pleased with the default pronunciation of a word to add the correct pronunciation
to a pronunciation dictionary. You can create a dictionary using MPW Rez or another
appropriate tool. See “The Pronunciation Dictionary Resource” beginning on page 4-89
for a discussion of the format of the pronunciation dictionary resource and the meaning
of it fields.

To install a pronunciation dictionary resource in a speech channel, you must read
the resource into memory and pass it to the UseDictionary function. Because the
UseDictionary function requires that you specify a speech channel, you might need
to reinstall the dictionary whenever your application allocates a new speech channel or
whenever it resets an existing speech channel. Listing 4-9 shows how you can use
the UseDictionary function to install a pronunciation dictionary resource in a
speech channel.

Listing 4-9 Installing a pronunciation dictionary resource into a speech channel

PROCEDURE MyUseDictionary (chan: SpeechChannel; resID: Integer);

VAR

myDict: Handle; {handle to dictionary data}

myErr: OSErr;
Using the Speech Manager 4-37

C H A P T E R 4

Speech Manager
BEGIN

myDict := GetResource('dict', resID); {load the dictionary}

IF (myDict <> NIL) AND (ResError = noErr) THEN

BEGIN

myErr := UseDictionary(chan, myDict); {install the dictionary}

IF myErr <> noErr THEN

DoError(myErr); {respond to an error}

ReleaseResource(myDict); {release the resource}

END;

END;

The MyUseDictionary procedure defined in Listing 4-9 attempts to find a resource of
resource type 'dict' with resource ID resID and uses the Resource Manager to read it
into memory. If your application stores pronunciation dictionaries in the data fork of
files, it can instead use analogous File Manager routines to read the data. If the data is
read in correctly, MyUseDictionary calls the UseDictionary function to install the
dictionary on the specified speech channel. Because the speech synthesizer copies all
necessary data from the dictionary to its internal buffers, the application is free to release
the memory occupied by the dictionary, as illustrated by the ReleaseResource call.

The pronunciation dictionary resource in Listing 4-10 consists of pronunciation
dictionary entries in Rez format. Each entry specifies a word in textual format and its
phonemic equivalent.

Listing 4-10 A sample pronunciation dictionary resource

resource 'dict' (1, "TestDict") {

smRoman, langEnglish, verUS, ThisSecond,

{

pron, {tx, "ROOSEVELT", ph, "_1EHf_d1IY_1AAr"},

pron, {tx, "CHELSEA", ph, "_C1EHls2IY"},

pron, {tx, "AMHERST", ph, "_2UXmAXrst"},

pron, {tx, "REDSOX", ph, "_r1EHd_s1AAks"},

pron, {tx, "HALLOWEEN", ph, "_h1AAl2OW_w1IYn"},

pron, {tx, "FELIX", ph, "_f1IYl2IHks_D2UX_k1AEt"},

pron, {tx, "WEDNESDAY", ph, "_m1IHd_w1IYk"},

},

};

Note that you are not restricted to using pronunciations similar to those of the words
listed. Typically, however, pronunciation dictionaries contain entries for words that the
Speech Manager pronounces unsatisfactorily.

Also, note that a pronunciation dictionary’s entries need not be in any particular order.
In particular, you should not assume that a pronunciation dictionary is in alphabetical
order unless your application creates the dictionary and maintains that order.
4-38 Using the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
The pronunciation dictionary resource header consists of nine fields, of which four must
be explicitly defined in a Rez definition such as the one in Listing 4-10. The first three of
these fields specify the script, language, and region code of the language for which the
pronunciation dictionary is designed. Note that you must create a separate
pronunciation dictionary for each region, language, or script. The fourth field of a
pronunciation dictionary is the date the pronunciation dictionary was last modified,
in terms of seconds since midnight, January 1, 1904. In Listing 4-10, it is assumed
that the constant ThisSecond is defined to be such a date. For information on
obtaining information about the current date in this format, see Inside Macintosh:
Operating System Utilities.

Speech Manager Reference 4

This section describes the constants, data structures, routines, and resources that are
specific to the Speech Manager.

The section “Constants” describes the available speech information selectors.

The section “Data Structures” beginning on page 4-45 shows all of the Speech Manager’s
Pascal data structures, including those for the voice specification and description
records, the speech status information record, and the phoneme information and
descriptor records.

The section “Speech Manager Routines” beginning on page 4-54 describes the Speech
Manager functions that allow you to generate speech, use voices, manage and control
speech channels, convert text to phonemes, and use pronunciation dictionaries.

The section “Application-Defined Routines” beginning on page 4-82 describes the kinds
of callback procedures you can implement.

The section “Resources” beginning on page 4-89 describes the format of pronunciation
dictionary resources.

Constants 4
This section describes the available speech information selectors.

Speech Information Selectors 4

This section describes the speech information selectors that you can pass in the
selector parameter of the GetSpeechInfo and SetSpeechInfo functions.

CONST

soCharacterMode = 'char'; {get or set character-processing mode}

soCommandDelimiter = 'dlim'; {set embedded command delimiters}

soCurrentA5 = 'myA5'; {set A5 on callbacks}
Speech Manager Reference 4-39

C H A P T E R 4

Speech Manager
soCurrentVoice = 'cvox'; {set speaking voice}

soErrorCallBack = 'ercb'; {set error callback}

soErrors = 'erro'; {get error information}

soInputMode = 'inpt'; {get or set text-processing mode}

soNumberMode = 'nmbr'; {get or set number-processing mode}

soPhonemeCallBack = 'phcb'; {set phoneme callback}

soPhonemeSymbols = 'phsy'; {get phoneme symbols and example }

{ words}

soPitchBase = 'pbas'; {get or set baseline pitch}

soPitchMod = 'pmod'; {get or set pitch modulation}

soRate = 'rate'; {get or set speech rate}

soRecentSync = 'sync'; {get most recent synchronization }

{ message information}

soRefCon = 'refc'; {set reference constant value}

soReset = 'rset'; {set channel back to default state}

soSpeechDoneCallBack = 'sdcb'; {set speech-done callback}

soStatus = 'stat'; {get status of channel}

soSyncCallBack = 'sycb'; {set synchronization callback}

soSynthExtension = 'xtnd'; {get or set synthesizer-specific }

{ information}

soSynthType = 'vers'; {get synthesizer information}

soTextDoneCallBack = 'tdcb'; {set text-done callback}

soVolume = 'volm'; {get or set speech volume}

soWordCallBack = 'wdcb'; {set word callback}

Constant descriptions

soCharacterMode
Get or set the speech channel’s character-processing mode.
Two constants are currently defined for the processing mode,
modeNormal and modeLiteral. When the character-processing
mode is modeNormal, input characters are spoken as you would
expect to hear them. When the mode is modeLiteral, each
character is spoken literally, so that the word “cat” would be spoken
“C–A–T”. The speechInfo parameter points to a variable of type
OSType, which is the character-processing mode.
This selector works with GetSpeechInfo and SetSpeechInfo
and does not move memory.

soCommandDelimiter
Set the embedded speech command delimiter characters to be used
for the speech channel. By default the opening delimiter is “[[” and
the closing delimiter is “]]”. Your application might need to change
these delimiters temporarily if those character sequences occur
naturally in a text buffer that is to be spoken. Your application can
also disable embedded command processing by passing empty
delimiters (2 NIL bytes). The speechInfo parameter is a pointer
to a delimiter information record, described on page 4-54.
4-40 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
This selector works with the SetSpeechInfo function and does
not move memory.

soCurrentA5 Set the value that the Speech Manager assigns to the A5 register
before invoking any application-defined callback procedures for the
speech channel. The A5 register must be set correctly if the callback
procedures are to be able to access application global variables. For
more information on the A5 register, see Inside Macintosh: Memory.
The speechInfo parameter should be set to the pointer contained
in the A5 register at a time when the application is not executing
interrupt code or to NIL if your application wishes to clear a value
previously set with the soCurrentA5 selector.
This selector works with the SetSpeechInfo function and does
not move memory. See Listing 4-6 on page 4-21 for an illustration of
the use of this selector.

soCurrentVoice
Set the current voice on the current speech channel to the specified
voice. The speechInfo parameter is a pointer to a voice
specification record. Your application should create the record by
calling the MakeVoiceSpec function, described on page 4-64.
SetSpeechInfo will return an incompatibleVoice error if
the specified voice is incompatible with the speech synthesizer
associated with the speech channel. If you have a speech channel
open using a voice from a particular synthesizer and you try to
switch to a voice that works with a different synthesizer, you
receive an incompatibleVoice error. You need to create a new
channel to use with the new voice.
This selector works with only SetSpeechInfo and might move
memory. Your application should not invoke it at interrupt time.

soErrorCallBack
Set the callback procedure to be called when an error is encountered
during the processing of an embedded command. The callback
procedure might also be called if other conditions (such as
insufficient memory) arise during the speech conversion process.
When a Speech Manager function returns an error directly, the
error callback procedure is not called. The callback procedure is
passed information about the most recent error; it can determine
information about the oldest pending error by using the speech
information selector soErrors. The speechInfo parameter is a
pointer to an application-defined error callback procedure, whose
syntax is described on page 4-86. Passing NIL in speechInfo
disables the error callback procedure.
This selector works with the SetSpeechInfo function and does
not move memory.

soErrors Get saved error information for the speech channel and clear its
error registers. This selector lets you poll for various run-time errors
that occur during speaking, such as the detection of badly formed
embedded commands. Errors returned directly by Speech Manager
functions are not reported here. If your application defines an error
callback procedure, the callback should use the soErrors selector
Speech Manager Reference 4-41

C H A P T E R 4

Speech Manager
to obtain error information. The speechInfo parameter is a
pointer to a speech error information record, described on page 4-49.
This selector works with the GetSpeechInfo function and does
not move memory.

soInputMode Get or set the speech channel’s current text-processing mode. The
returned value specifies whether the channel is currently in text
input mode or phoneme input mode. The speechInfo parameter
is a pointer to a variable of type OSType, which specifies a
text-processing mode. The following constants specify the
available text-processing modes:

CONST

modeText = 'TEXT';

modePhonemes = 'PHON';

The modeText constant indicates that the speech channel is in
text-processing mode. The modePhonemes constant indicates that
the speech channel is in phoneme-processing mode. When in
phoneme-processing mode, a text buffer is interpreted to be a series
of characters representing various phonemes and prosodic controls,
as discussed in “Phonemic Representation of Speech” on page 4-32
and “Prosodic Control Symbols” on page 4-34. Some synthesizers
might support additional input-processing modes and define
constants for these modes.
This selector works with both the GetSpeechInfo and
SetSpeechInfo functions. It might move memory only when
used in conjunction with the SetSpeechInfo function.

soNumberMode Get or set the speech channel’s current number-processing mode.
Two OSType constants are currently defined, modeNormal and
modeLiteral. When the number-processing mode is
modeNormal, the synthesizer assembles digits into numbers (so
that 12 is spoken as “twelve”). When the mode is modeLiteral,
each digit is spoken literally (so that 12 is spoken as “one, two”).
The speechInfo parameter is a pointer to a variable of type
OSType, which specifies the number-processing mode.
This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soPhonemeCallBack
Set the callback procedure to be called every time the Speech
Manager is about to generate a phoneme on the speech channel.
The speechInfo parameter is a pointer to an application-defined
phoneme callback procedure, whose syntax is described on
page 4-87. Passing NIL in speechInfo disables the phoneme
callback procedure.
This selector works with the SetSpeechInfo function and does
not move memory.

soPhonemeSymbols
Get a list of phoneme symbols and example words defined for the
4-42 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
speech channel’s synthesizer. Your application might use this
information to show the user what symbols to use when entering
phonemic text directly. The speechInfo parameter is a pointer to
a variable of type Handle that, on exit from the GetSpeechInfo
function, is a handle to a phoneme descriptor record, described on
page 4-53.
This selector works with the GetSpeechInfo function and might
move memory. Your application should not invoke it at interrupt
time.

soPitchBase Get or set the speech channel’s baseline speech pitch. This selector is
intended for use by the Speech Manager; ordinarily, an application
uses the GetSpeechPitch and SetSpeechPitch functions,
described on page 4-75 and page 4-76, respectively. The
speechInfo parameter is a pointer to a variable of type Fixed.
This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soPitchMod Get or set a speech channel’s pitch modulation. The speechInfo
parameter is a pointer to a variable of type Fixed. Pitch
modulation is also expressed as a fixed-point value in the range
of 0.000 to 127.000. These values correspond to MIDI note values,
where 60.000 is equal to middle C on a piano scale. The most useful
speech pitches fall in the range of 40.000 to 55.000. A pitch
modulation value of 0.000 corresponds to a monotone in which all
speech is generated at the frequency corresponding to the speech
pitch. Given a speech pitch value of 46.000, a pitch modulation
of 2.000 would mean that the widest possible range of pitches
corresponding to the actual frequency of generated text would
be 44.000 to 48.000.
This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soRate Get or set a speech channel’s speech rate. The speechInfo
parameter is a pointer to a variable of type Fixed. The possible
range of speech rates is from 0.000 to 65535.65535. The range of
supported rates is not predefined by the Speech Manager; each
speech synthesizer provides its own range of speech rates. Average
human speech occurs at a rate of 180 to 220 words per minute.
This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soRecentSync Get the message code for the most recently encountered
synchronization command. If no synchronization command has
been encountered, 0 is returned. The speechInfo parameter is a
pointer to a variable of type OSType.
This selector works with the GetSpeechInfo function and does
not move memory.

soRefCon Set a speech channel’s reference constant value. The reference
constant value is passed to application-defined callback procedures
and might contain any value convenient for the application. The
speechInfo parameter is a long integer containing the reference
Speech Manager Reference 4-43

C H A P T E R 4

Speech Manager
constant value. In contrast with other selectors, this selector does
not require that the speechInfo parameter’s value be a pointer
value. Typically, however, an application does use this selector to
pass a pointer or handle value to callback procedures.
This selector works with the SetSpeechInfo function and does
not move memory. See Listing 4-6 on page 4-21 for an illustration of
the use of this selector.

soReset Set a speech channel back to its default state. For example, speech
pitch and speech rate are set to default values. The speechInfo
parameter should be set to NIL.
This selector works with the SetSpeechInfo function and does
not move memory.

soSpeechDoneCallBack
Set the callback procedure to be called when the Speech Manager
has finished generating speech on the speech channel. The
speechInfo parameter is a pointer to an application-defined
speech-done callback procedure, whose syntax is described on
page 4-84. Passing NIL in speechInfo disables the speech-done
callback procedure.
This selector works with the SetSpeechInfo function and does
not move memory.

soStatus Get a speech status information record for the speech channel. The
speechInfo parameter is a pointer to a speech status information
record, described on page 4-48.
This selector works with the GetSpeechInfo function and does
not move memory.

soSyncCallBack
Set the callback procedure to be called when the Speech Manager
encounters a synchronization command within an embedded
speech command in text being processed on the speech channel.
The speechInfo parameter is a pointer to an application-defined
synchronization callback procedure, whose syntax is described on
page 4-85. Passing NIL in speechInfo disables the
synchronization callback procedure.
This selector works with the SetSpeechInfo function and does
not move memory.

soSynthExtension
Get or set synthesizer-specific information or settings. The
speechInfo parameter is a pointer to a speech extension data
record, described on page 4-53. Your application should set the
synthCreator field of this record before calling GetSpeechInfo
or SetSpeechInfo. Ordinarily, your application must pass
additional information to the synthesizer in the synthData field.
This selector works with both the GetSpeechInfo and
SetSpeechInfo functions. Whether it moves memory depends
on the synthesizer being used and the information passed to the
synthesizer.
4-44 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
soSynthType Get a speech version information record for the speech synthesizer
being used on the specified speech channel. The speechInfo
parameter is a pointer to a speech version information record,
described on page 4-50.
This selector works with the GetSpeechInfo function and does
not move memory.

soTextDoneCallBack
Set the callback procedure to be called when the Speech Manager
has finished processing speech being generated on the speech
channel. The speechInfo parameter is a pointer to an
application-defined text-done callback procedure, whose syntax
is described on page 4-84. Passing NIL in speechInfo disables
the text-done callback procedure.
This selector works with the GetSpeechInfo function and does
not move memory.

soVolume Get or set the speech volume for a speech channel. The
speechInfo parameter is a pointer to a variable of type Fixed.
Volumes are expressed in fixed-point units ranging from 0.0
through 1.0. A value of 0.0 corresponds to silence, and a value of
1.0 corresponds to the maximum possible volume. Volume units lie
on a scale that is linear with amplitude or voltage. A doubling of
perceived loudness corresponds to a doubling of the volume.
This selector works with both the GetSpeechInfo and
SetSpeechInfo functions and does not move memory.

soWordCallBack
Set the callback procedure to be called every time the Speech
Manager is about to generate a word on the speech channel. The
speechInfo parameter is a pointer to an application-defined word
callback procedure, whose syntax is described on page 4-87. Passing
NIL in speechInfo disables the word callback procedure.
This selector works with the SetSpeechInfo function and does
not move memory. See Listing 4-7 on page 4-21 for an illustration of
the use of this selector.

Data Structures 4
This section describes the data structures defined by the Speech Manager.

The speech channel record contains information internal to the Speech Manager. Speech
channels, which process Speech Manager text and commands, are defined as pointers to
Speech Manager records.

A voice specification record provides a unique specification of a voice. You can
create such a record with the MakeVoiceSpec function and then pass it to the
GetVoiceDescription function to obtain information about the voice. This
information is contained in a voice description record. Or, you can use the
GetVoiceInfo function to obtain information about the file that stores a voice.
This information is contained in a voice file information record.
Speech Manager Reference 4-45

C H A P T E R 4

Speech Manager
By using the GetSpeechInfo function, you can obtain information about a speech
channel, as well as information about its synthesizer. Such information is returned
in speech status information records, speech error information records, and speech
version information records.

The GetSpeechInfo function also allows you to obtain information about the
phonemes defined for a synthesizer. Information about a single phoneme is contained
in a phoneme information record. A phoneme descriptor record contains phoneme
information records for all of the phonemes that a synthesizer supports.

Synthesizers that use the GetSpeechInfo or SetSpeechInfo function to allow
exploitation of synthesizer-specific features often require that data passed to it be
formatted in a particular way. The speech extension data record allows your application
to exchange data in any format with a synthesizer.

The SpeakString, SpeakText, and SpeakBuffer functions can process both text and
commands embedded in that text. So that commands can be distinguished from text, the
commands must be enclosed by command delimiters. The delimiter information record
allows your application to change the command delimiters.

Voice Specification Records 4

A voice specification record provides a unique specification that you must use to obtain
information about a voice. You also must use a voice specification record if you wish to
create a speech channel that generates speech in a voice other than the current system
default voice. The VoiceSpec data type defines a voice specification record. In Pascal,
the VoiceSpecPtr data type defines a pointer to a voice specification record. The
VoiceSpecPtr data type is not defined in the interface files for C programmers. If you
are programming in C and you need to pass a variable of type VoiceSpecPtr to a
Speech Manager routine, simply pass a pointer to a voice specification record instead.

TYPE VoiceSpec =

RECORD

creator: OSType; {ID of required synthesizer}

id: OSType; {ID of voice on the synthesizer}

END;

Field descriptions

creator The synthesizer that is required to use the voice. This is equivalent
to the value contained in the synthManufacturer field of a
speech version information record and that contained in the
synthCreator field of a speech extension data record. The set of
OSType values specified entirely by space characters and lowercase
letters is reserved.

id The voice ID of the voice for the synthesizer. Every voice on a
synthesizer has a unique ID.
4-46 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
IMPORTANT

To ensure compatibility with future versions of the Speech Manager, you
should never fill in the fields of a voice specification record yourself.
Instead, you should create a voice specification record by using the
MakeVoiceSpec function. ▲

Voice Description Records 4

By calling the GetVoiceDescription function, you can obtain information about a
voice in a voice description record. The VoiceDescription data type defines a voice
description record.

TYPE VoiceDescription =

RECORD

length: LongInt; {size of record}

voice: VoiceSpec; {voice synthesizer and ID info}

version: LongInt; {version number of voice}

name: Str63; {name of voice}

comment: Str255; {text information about voice}

gender: Integer; {neuter, male, or female}

age: Integer; {approximate age in years}

script: Integer; {script code of text voice can process}

language: Integer; {language code of voice output}

region: Integer; {region code of voice output}

reserved1: LongInt; {always 0--reserved for future use}

reserved2: LongInt; {always 0--reserved for future use}

reserved3: LongInt; {always 0--reserved for future use}

reserved4: LongInt; {always 0--reserved for future use}

END;

Field descriptions

length The size of the voice description record, in bytes.
voice A voice specification record that uniquely identifies the voice.
version The version number of the voice.
name The name of the voice, preceded by a length byte. Names must be

63 characters or less.
comment Additional text information about the voice. The information might

indicate how much memory the voice requires. Some synthesizers
use this field to store a phrase that can be spoken.

gender The gender of the individual represented by the voice. The value in
this field must be one of the following constants:
Speech Manager Reference 4-47

C H A P T E R 4

Speech Manager
CONST

kNeuter = 0; {neuter voice}

kMale = 1; {male voice}

kFemale = 2; {female voice}

A neuter voice is a voice that is not distinctively male or female.
age The approximate age in years of the individual represented by

the voice.
script The script code of text that the voice can process.
language A code that indicates the language of voice output.
region A code that indicates the region represented by the voice.
reserved1 Reserved.
reserved2 Reserved.
reserved3 Reserved.
reserved4 The four reserved fields are reserved for use by Apple.

Voice File Information Records 4

A voice file information record specifies the file in which a voice is stored and the
resource ID of the voice within that file. You can use the GetVoiceInfo function to
obtain a voice file information record for a voice. The VoiceFileInfo data type defines
a voice file information record. In Pascal, the VoiceFileInfoPtr data type defines a
pointer to a voice file information record.

TYPE VoiceFileInfo =

RECORD

fileSpec: FSSpec; {volume, dir, and name of file}

resID: Integer; {resource ID of voice in the file}

END;

Field descriptions

fileSpec A file system specification record that contains the volume,
directory, and name of the file containing the voice. Generally, files
containing a single voice are of type
kTextToSpeechVoiceFileType, and files containing multiple
voices are of type kTextToSpeechVoiceBundleType.

resID The resource ID of the voice in the file. Voices are stored in
resources of type kTextToSpeechVoiceType.

Speech Status Information Records 4

By calling the GetSpeechInfo function with the soStatus selector, you can find
out information about the status of a speech channel. This information is stored in a
speech status information record, which the SpeechStatusInfo data type defines.
4-48 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
TYPE SpeechStatusInfo =

RECORD

outputBusy: Boolean; {TRUE if audio is playing }

{ or text is being processed}

outputPaused: Boolean; {TRUE if channel is paused}

inputBytesLeft: LongInt; {bytes of text left to process}

phonemeCode: Integer; {opcode for current phoneme}

END;

Field descriptions

outputBusy Whether the speech channel is currently producing speech. A
speech channel is considered to be producing speech even at some
times when no audio data is being produced through the Macintosh
speaker. This occurs, for example, when the Speech Manager is
processing an input buffer but has not yet initiated speech or when
speech output is paused.

outputPaused Whether speech output in the speech channel has been paused by a
call to the PauseSpeechAt function.

inputBytesLeft
The number of input bytes of the text that the speech channel must
still process. When inputBytesLeft is 0, the buffer of input text
passed to one of the SpeakText or SpeakBuffer functions may
be disposed of. (Note that when you call the SpeakString
function, the Speech Manager stores a duplicate of the string to
be spoken in an internal buffer; thus, you may delete the original
string immediately after calling SpeakString.)

phonemeCode The opcode for the phoneme that the speech channel is currently
processing.

Speech Error Information Records 4

By calling the GetSpeechInfo function with the soErrors selector, you can obtain a
speech error information record, which shows what Speech Manager errors occurred
while processing a text buffer on a given speech channel. The SpeechErrorInfo data
type defines a speech error information record.

TYPE SpeechErrorInfo =

RECORD

count: Integer; {number of errors since last check}

oldest: OSErr; {oldest unread error}

oldPos: LongInt; {character position of oldest error}

newest: OSErr; {most recent error}

newPos: LongInt; {character position of newest error}

END;
Speech Manager Reference 4-49

C H A P T E R 4

Speech Manager
Field descriptions

count The number of errors that have occurred in processing the current
text buffer since the last call to the GetSpeechInfo function with
the soErrors selector. Of these errors, you can find information
about only the first and last error that occurred.

oldest The error code of the first error that occurred after the previous call
to the GetSpeechInfo function with the soErrors selector.

oldPos The character position within the text buffer being processed of
the first error that occurred after the previous call to the
GetSpeechInfo function with the soErrors selector.

newest The error code of the most recent error.
newPos The character position within the text buffer being processed of the

most recent error.

Speech error information records never include errors that are returned by Speech
Manager routines. Instead, they reflect only errors encountered directly in the processing
of text, and, in particular, in the processing of commands embedded within text.

The speech error information record keeps track of only the most recent error and the
first error that occurred after the previous call to the GetSpeechInfo function with the
soErrors selector. If your application needs to keep track of all errors, then you should
install an error callback procedure, as described in “Error Callback Procedure” beginning
on page 4-86.

Speech Version Information Records 4

By calling the GetSpeechInfo function with the soSynthType selector, you can
obtain a speech version information record, which provides information about the
speech synthesizer currently being used. The SpeechVersionInfo data type defines a
speech version information record.

TYPE SpeechVersionInfo =

RECORD

synthType: OSType; {general synthesizer type}

synthSubType: OSType; {specific synthesizer type}

synthManufacturer: OSType; {synthesizer creator ID}

synthFlags: LongInt; {synthesizer feature flags}

synthVersion: NumVersion; {synthesizer version number}

END;

Field descriptions

synthType The general type of the synthesizer. For the current version of the
Speech Manager, this field always contains the value
kTextToSpeechSynthType, indicating that the synthesizer
converts text into speech.

synthSubType The specific type of the synthesizer. Currently, no specific types of
synthesizer are defined. If you define a new type of synthesizer, you
4-50 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
should register the four-character code for your type with
Developer Technical Support.

synthManufacturer
A unique identification of a synthesizer engine. If you develop
synthesizers, then you should register a different four-character
code for each synthesizer you develop with Developer Technical
Support. The creatorID field of the voice specification record and
the synthCreator field of a speech extension data record should
each be set to the value stored in this field for the desired
synthesizer.

synthFlags A set of flags indicating which synthesizer features are activated.
The following constants define the bits in this field whose meanings
are defined for all synthesizers:

CONST

kNoEndingProsody = 1;

kNoSpeechInterrupt = 2;

kPreflightThenPause = 4;

The kNoEndingProsody flag bit is used to control whether or not
the speech synthesizer automatically applies ending prosody, the
speech tone and cadence that normally occur at the end of a
statement. Under normal circumstances (for example, when the flag
bit is not set), ending prosody is applied to the speech when the end
of the textBuf data is reached. This default behavior can be
disabled by setting the kNoEndingProsody flag bit.
Some synthesizers do not speak until the kNoEndingProsody flag
bit is reset, or they encounter a period in the text, or textBuf is full.
The kNoSpeechInterrupt flag bit is used to control the behavior
of SpeakBuffer when called on a speech channel that is still busy.
When the flag bit is not set, SpeakBuffer behaves similarly to
SpeakString and SpeakText. Any speech currently being
produced on the specified speech channel is immediately
interrupted, and then the new text buffer is spoken. When the
kNoSpeechInterrupt flag bit is set, however, a request to speak
on a channel that is still busy processing a prior text buffer will
result in an error. The new buffer is ignored and the error
synthNotReady is returned. If the prior text buffer has been fully
processed, the new buffer is spoken normally. One way of achieving
continuous speech without using callback procedures is to
continually call SpeakBuffer with the kNoSpeechInterrupt
flag bit set until the function returns noErr. The function will then
execute as soon as the first text buffer has been processed.
The kPreflightThenPause flag bit is used to minimize the
latency experienced when the speech synthesizer is attempting to
speak. Ordinarily, whenever a call to SpeakString, SpeakText,
or SpeakBuffer is made, the speech synthesizer must perform a
certain amount of initial processing before speech output is heard.
This startup latency can vary from a few milliseconds to several
Speech Manager Reference 4-51

C H A P T E R 4

Speech Manager
seconds depending upon which speech synthesizer is being used.
Recognizing that larger startup delays might be detrimental to
certain applications, a mechanism is provided to allow the
synthesizer to perform any necessary computations at noncritical
times. Once the computations have been completed, the speech is
able to start instantly. When the kPreflightThenPause flag bit is
set, the speech synthesizer will process the input text as necessary
to the point where it is ready to begin producing speech output. At
this point, the synthesizer will enter a paused state and return to the
caller. When the application is ready to produce speech, it should
call the ContinueSpeech function to begin speaking.

synthVersion The version number of the synthesizer.

Phoneme Information Records 4

Information about a phoneme is stored in a phoneme information record. Ordinarily,
you use a phoneme information record to show the user how to enter text to represent a
particular phoneme when the 'PHON' input mode is activated. The PhonemeInfo data
type defines a phoneme information record.

TYPE PhonemeInfo =

RECORD

opCode: Integer; {opcode for the phoneme}

phStr: Str15; {corresponding character string}

exampleStr: Str31; {word that shows use of phoneme}

hiliteStart: Integer; {offset from beginning of word }

{ to beginning of phoneme sound}

hiliteEnd: Integer; {offset from beginning of word }

{ to end of phoneme sound}

END;

Field descriptions

opCode The opcode for the phoneme. For a list of English-language
opcodes, see Table 4-3 on page 4-33.

phStr The string used to represent the phoneme. The string does not
necessarily have a phonetic connection to the phoneme, but might
simply be an abstract textual representation of it.

exampleStr An example word that illustrates use of the phoneme.
hiliteStart The number of characters in the example word that precede the

portion of that word representing the phoneme.
hiliteEnd The number of characters between the beginning of the example

word and the end of the portion of that word representing the
phoneme.

You might use the information contained in the hiliteStart and hiliteEnd fields to
highlight the characters in the example word that represent the phoneme.
4-52 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Note that in order to obtain a phoneme information record for an individual phoneme,
you must obtain a list of phonemes through a phoneme descriptor record, described next.

Phoneme Descriptor Records 4

By calling the GetSpeechInfo function with the soPhonemeSymbols selector, you
can obtain a phoneme descriptor record, which describes all phonemes defined for the
current synthesizer. The PhonemeDescriptor data type defines a phoneme
descriptor record.

TYPE PhonemeDescriptor =

RECORD

phonemeCount: Integer; {number of phonemes defined by current }

{ synthesizer}

thePhonemes: ARRAY[0..0] OF PhonemeInfo;

{list of phoneme information records}

END;

Field descriptions

phonemeCount The number of phonemes that the current synthesizer defines.
Typically, this will correspond to the number of phonemes in the
language supported by the synthesizer.

thePhonemes An array of phoneme information records.

A common use for a phoneme descriptor record is to provide a graphical display to the
user of all available phonemes. Note that such a list would be useful only for a user
entering phonemic data directly rather than just entering text.

Speech Extension Data Records 4

The speech extension data record allows you to use the GetSpeechInfo and
SetSpeechInfo functions with selectors defined by particular synthesizers. By
requiring that you pass to one of these functions a pointer to a speech extension
data record, synthesizers can permit the exchange of data in any format. The
SpeechXtndData data type defines a speech extension data record.

TYPE SpeechXtndData =

RECORD

synthCreator: OSType; {synthesizer creator ID}

{data used by synthesizer}

synthData: PACKED ARRAY[0..1] OF Char;

END;

Field descriptions

synthCreator The synthesizer’s creator ID, identical to the value stored in the
synthManufacturer field of a speech version information record.
Speech Manager Reference 4-53

C H A P T E R 4

Speech Manager
You should set this field to the appropriate value before calling
GetSpeechInfo or SetSpeechInfo.

synthData Synthesizer-specific data. The size and format of the data in this
field may vary.

Delimiter Information Records 4

A delimiter information record defines the characters used to indicate the beginning
and end of a command embedded in text. A delimiter can be one or two characters. The
DelimiterInfo data type defines a delimiter information record.

TYPE DelimiterInfo =

RECORD

startDelimiter: PACKED ARRAY[0..1] OF Char;

endDelimiter: PACKED ARRAY[0..1] OF Char;

END;

Field descriptions

startDelimiter The start delimiter for an embedded command. By default, the start
delimiter is “[[”.

endDelimiter The end delimiter for an embedded command. By default, the end
delimiter is “]]”.

Ordinarily, applications that support embedded speech commands should not change
the start or end delimiters. However, if for some reason you must change the delimiters,
you can use the SetSpeechInfo function with the soCommandDelimiter selector.
For example, you might do this if a text buffer naturally includes the delimiter strings.
Before passing such a buffer to the Speech Manager, you can change the delimiter strings
to some two-character sequences not used in the buffer and then change the delimiter
strings back once processing of the buffer is complete.

If a single-byte delimiter is desired, it should be followed by a NIL (0) byte. If the
delimiter strings both consist of two NIL bytes, embedded command processing
is disabled.

Speech Manager Routines 4
This section describes the routines provided by the Speech Manager. You can use these
routines to

■ generate speech and then pause or stop it

■ obtain information about an individual voice or all voices

■ create and dispose of speech channels

■ obtain the Speech Manager’s version and status

■ change the rate or pitch of speech
4-54 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
■ convert textual into phonetic data

■ install a pronunciation dictionary into a speech channel

With the exception of the SpeechManagerVersion, SpeechBusy, and
SpeechBusySystemWide functions, all Speech Manager routines return a result code
to indicate whether an error has occurred.

The section “Application-Defined Routines” beginning on page 4-82 describes the syntax
and operation of application-defined callback procedures.

Starting, Stopping, and Pausing Speech 4

You can use the SpeakString function to generate speech from strings of fewer than
256 characters. The SpeakText function also generates speech, but through a speech
channel through which you can exert control over the generated speech. The
SpeakBuffer function includes all the capabilities of SpeakText and allows you
to set certain flags that control speech behavior.

To stop speech, use the StopSpeech function or the StopSpeechAt function. The latter
provides control over when speech is stopped. To pause and later resume speech, use the
PauseSpeechAt and ContinueSpeech functions.

SpeakString 4

You can use the SpeakString function to have the Speech Manager speak a text string.

FUNCTION SpeakString (s: Str255): OSErr;

s The string to be spoken.

DESCRIPTION

The SpeakString function attempts to speak the Pascal-style text string contained in
the string s. Speech is produced asynchronously using the default system voice. When
an application calls this function, the Speech Manager makes a copy of the passed string
and creates any structures required to speak it. As soon as speaking has begun, control is
returned to the application. The synthesized speech is generated asynchronously to the
application so that normal processing can continue while the text is being spoken. No
further interaction with the Speech Manager is required at this point, and the application
is free to release the memory that the original string occupied.

If SpeakString is called while a prior string is still being spoken, the sound currently
being synthesized is interrupted immediately. Conversion of the new text into speech is
then begun. If you pass a zero-length string (or, in C, a null pointer) to SpeakString,
the Speech Manager stops any speech previously being synthesized by SpeakString
without generating additional speech. If your application uses SpeakString, it is often
a good idea to stop any speech in progress whenever your application receives a
Speech Manager Reference 4-55

C H A P T E R 4

Speech Manager
suspend event. (Note, however, that calling SpeakString with a zero-length string
has no effect on speech channels other than the one managed internally by the Speech
Manager for the SpeakString function.)

The text passed to the SpeakString function may contain embedded speech
commands.

SPECIAL CONSIDERATIONS

Because the SpeakString function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeakString function are

RESULT CODES

SpeakText 4

You can use the SpeakText function to have the Speech Manager speak a buffer of text.

FUNCTION SpeakText (chan: SpeechChannel; textBuf: Ptr;

textBytes: LongInt): OSErr;

chan The speech channel through which speech is to be spoken.

textBuf A pointer to the first byte of text to spoken.

textBytes The number of bytes of text to spoken.

DESCRIPTION

The SpeakText function converts the text stream specified by the textBuf and
textBytes parameters into speech using the voice and control settings for the speech
channel chan, which should be created with the NewSpeechChannel function.
The speech is generated asynchronously. This means that control is returned to your
application before the speech has finished (and probably even before it has begun).
The maximum length of the text buffer that can be spoken is limited only by the
available RAM.

Trap macro Selector

_SoundDispatch $0220000C

noErr 0 No error
memFullErr –108 Not enough memory to speak
synthOpenFailed –241 Could not open another speech synthesizer channel
4-56 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
If SpeakText is called while the channel is currently busy speaking the contents of
a prior text buffer, it immediately stops speaking from the prior buffer and begins
speaking from the new text buffer as soon as possible. If you pass a zero-length string
(or, in C, a null pointer) to SpeakText, the Speech Manager stops all speech currently
being synthesized by the speech channel specified in the chan parameter without
generating additional speech.

▲ W A R N I N G

The text buffer must be locked in memory and must not move while the
Speech Manager processes it. This buffer is read at interrupt time, and
moving it could cause a system crash. If your application defines a
text-done callback procedure, then it can move the text buffer or dispose
of it once the callback procedure is executed. ▲

SPECIAL CONSIDERATIONS

Because the SpeakText function moves memory, you should not call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeakText function are

RESULT CODES

SpeakBuffer 4

You can use the SpeakBuffer function to have the Speech Manager speak a buffer of
text, using certain flags to control speech behavior.

FUNCTION SpeakBuffer (chan: SpeechChannel; textBuf: Ptr;

textBytes: LongInt;

controlFlags: LongInt): OSErr;

chan The speech channel through which speech is to be spoken.

textBuf A pointer to the first byte of text to spoken.

textBytes The number of bytes of text to spoken.

controlFlags
Control flags to customize speech behavior.

Trap macro Selector

_SoundDispatch $0624000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad
Speech Manager Reference 4-57

C H A P T E R 4

Speech Manager
DESCRIPTION

The SpeakBuffer function behaves identically to the SpeakText function, but allows
control of several speech parameters by setting values of the controlFlags parameter.
The controlFlags parameter relies on the following constants, which may be applied
additively:

CONST

kNoEndingProsody = 1; {disable prosody at end of sentences}

kNoSpeechInterrupt = 2; {do not interrupt current speech}

kPreflightThenPause = 4; {compute speech without generating}

Each constant specifies a flag bit of the controlFlags parameter, so by passing the
constants additively you can enable multiple capabilities of SpeakBuffer. If you pass
0 in the controlFlags parameter, SpeakBuffer works just like SpeakText. By
passing kNoEndingProsody + kNoSpeechInterrupt in the controlFlags
parameter, SpeakBuffer works like SpeakText except that the kNoEndingProsody
and kNoSpeechInterrupt features have been selected. Future versions of the Speech
Manager may define additional constants.

The kNoEndingProsody flag bit is used to control whether or not the speech
synthesizer automatically applies ending prosody, the speech tone and cadence that
normally occur at the end of a statement. Under normal circumstances (for example,
when the flag bit is not set), ending prosody is applied to the speech when the end of
the textBuf data is reached. This default behavior can be disabled by setting the
kNoEndingProsody flag bit.

Some synthesizers do not speak until the kNoEndingProsody flag bit is reset, or they
encounter a period in the text, or textBuf is full.

The kNoSpeechInterrupt flag bit is used to control the behavior of SpeakBuffer
when called on a speech channel that is still busy. When the flag bit is not set,
SpeakBuffer behaves similarly to SpeakString and SpeakText. Any speech
currently being produced on the specified speech channel is immediately interrupted,
and then the new text buffer is spoken. When the kNoSpeechInterrupt flag bit is set,
however, a request to speak on a channel that is still busy processing a prior text buffer
will result in an error. The new buffer is ignored and the error synthNotReady is
returned. If the prior text buffer has been fully processed, the new buffer is spoken
normally. One way of achieving continuous speech without using callback procedures is
to continually call SpeakBuffer with the kNoSpeechInterrupt flag bit set until the
function returns noErr. The function will then execute as soon as the first text buffer has
been processed.

The kPreflightThenPause flag bit is used to minimize the latency experienced when
the speech synthesizer is attempting to speak. Ordinarily, whenever a call to
SpeakString, SpeakText, or SpeakBuffer is made, the speech synthesizer must
perform a certain amount of initial processing before speech output is heard. This
startup latency can vary from a few milliseconds to several seconds depending upon
which speech synthesizer is being used. Recognizing that larger startup delays might
be detrimental to certain applications, a mechanism exists to allow the synthesizer to
4-58 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
perform any necessary computations at noncritical times. Once the computations have
been completed, the speech is able to start instantly. When the kPreflightThenPause
flag bit is set, the speech synthesizer will process the input text as necessary to the point
where it is ready to begin producing speech output. At this point, the synthesizer will
enter a paused state and return to the caller. When the application is ready to produce
speech, it should call the ContinueSpeech function to begin speaking.

When the controlFlags parameter is set to 0, SpeakBuffer behaves identically to
SpeakText.

SPECIAL CONSIDERATIONS

Because the SpeakBuffer function might move memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeakBuffer function are

RESULT CODES

StopSpeech 4

You can use the StopSpeech function to terminate speech immediately on a specified
channel.

FUNCTION StopSpeech (chan: SpeechChannel): OSErr;

chan The speech channel on which speech is to be stopped.

DESCRIPTION

The StopSpeech function immediately terminates speech on the channel specified by
the chan parameter. After returning from StopSpeech, your application can safely
release any text buffer that the speech synthesizer has been using. You can call
StopSpeech for an already idle channel without ill effect.

You can also stop speech by passing a zero-length string (or, in C, a null pointer) to one
of the SpeakString, SpeakText, or SpeakBuffer functions. Doing this stops speech

Trap macro Selector

_SoundDispatch $0828000C

noErr 0 No error
synthNotReady –242 Speech channel is still busy speaking
invalidComponentID –3000 Speech channel is uninitialized or bad
Speech Manager Reference 4-59

C H A P T E R 4

Speech Manager
only in the specified speech channel (or, in the case of SpeakString, in the speech
channel managed internally by the Speech Manager).

SPECIAL CONSIDERATIONS

Because the StopSpeech function might move or purge memory, you should not call it
at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StopSpeech function are

RESULT CODES

SEE ALSO

Before calling the StopSpeech function, you can use the SpeechBusy function, which
is described on page 4-72, to determine if a synthesizer is still speaking. If you are
working with multiple speech channels, you can use the status selector with the routine
GetSpeechInfo which is described on page 4-77, to determine if a specific channel is
still speaking.

StopSpeechAt 4

You can use the StopSpeechAt function to terminate speech delivery on a specified
channel either immediately or at the end of the current word or sentence.

FUNCTION StopSpeechAt (chan: SpeechChannel; whereToStop: LongInt)

: OSErr;

chan The speech channel on which speech is to be stopped.

whereToStop
A constant indicating when speech processing should stop. Pass the
constant kImmediate to stop immediately, even in the middle of a word.
Pass kEndOfWord or kEndOfSentence to stop speech at the end of the
current word or sentence, respectively.

Trap macro Selector

_SoundDispatch $022C000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad
4-60 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
DESCRIPTION

The StopSpeechAt function halts the production of speech on the channel specified by
chan at a specified point in the text. This routine returns immediately, although speech
output continues until the specified point has been reached.

▲ W A R N I N G

If you call the StopSpeechAt function before the Speech Manager
finishes processing input text, then the function might return before
some input text has yet to be spoken. Thus, before disposing of the
text buffer, your application should wait until its text-done callback
procedure has been called (if one has been defined), or until it can
determine (by, for example obtaining a speech status information record)
that the Speech Manager is no longer processing input text. ▲

If the end of the input text buffer is reached before the specified stopping point, the
speech synthesizer stops at the end of the buffer without generating an error.

SPECIAL CONSIDERATIONS

Because the StopSpeechAt function might move or purge memory, you should not call
it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the StopSpeechAt function are

RESULT CODES

PauseSpeechAt 4

You can use the PauseSpeechAt function to pause speech on a speech channel.

FUNCTION PauseSpeechAt (chan: SpeechChannel; whereToStop: LongInt)

: OSErr;

chan The speech channel on which speech is to be paused.

whereToStop
A constant indicating when speech processing should be paused. Pass
the constant kImmediate to pause immediately, even in the middle of
a word. Pass kEndOfWord or kEndOfSentence to pause speech at the
end of the current word or sentence, respectively.

Trap macro Selector

_SoundDispatch $0430000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad
Speech Manager Reference 4-61

C H A P T E R 4

Speech Manager
DESCRIPTION

The PauseSpeechAt function makes speech production pause at a specified point in
the text. PauseSpeechAt returns immediately, although speech output will continue
until the specified point.

You can determine whether your application has paused speech output on a speech
channel by obtaining a speech status information record through the GetSpeechInfo
function. While a speech channel is paused, the speech status information record
indicates that outputBusy and outputPaused are both TRUE.

If the end of the input text buffer is reached before the specified pause point, speech
output pauses at the end of the buffer.

The PauseSpeechAt function differs from the StopSpeech and StopSpeechAt
functions in that a subsequent call to ContinueSpeech, described next, causes the
contents of the current text buffer to continue being spoken.

▲ W A R N I N G

If you plan to continue speech synthesis from a paused speech channel,
the text buffer being processed must remain available at all times and
must not move while the channel is in a paused state. ▲

SPECIAL CONSIDERATIONS

Because the PauseSpeechAt function might move or purge memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PauseSpeechAt function are

RESULT CODES

ContinueSpeech 4

You can use the ContinueSpeech function to resume speech paused by the
PauseSpeechAt function.

FUNCTION ContinueSpeech (chan: SpeechChannel): OSErr;

chan The paused speech channel on which speech is to be resumed.

Trap macro Selector

_SoundDispatch $0434000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad
4-62 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
DESCRIPTION

At any time after the PauseSpeechAt function is called, the ContinueSpeech
function can be called to continue speaking from the beginning of the word in which
speech paused. Calling ContinueSpeech on a channel that is not currently in a paused
state has no effect on the speech channel or on future calls to the PauseSpeechAt
function. If you call ContinueSpeech on a channel before a pause is effective,
ContinueSpeech cancels the pause.

If the PauseSpeechAt function stopped speech in the middle of a word, the Speech
Manager will start speaking that word from the beginning when you call
ContinueSpeech.

SPECIAL CONSIDERATIONS

Because the ContinueSpeech function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the ContinueSpeech function are

RESULT CODES

Obtaining Information About Voices 4

Specification of a voice requires a voice specification record. When you already know the
creator and ID for a voice, you should use the MakeVoiceSpec function to create such a
record rather than filling in the fields of one directly. To obtain information about all
available voices, use the CountVoices function to determine how many voices are
available, and the GetIndVoice function to obtain a voice specification record
corresponding to each voice.

Having created a voice specification record, you can obtain information about the voice
to which it corresponds. The GetVoiceDescription function provides information
about a voice in the form of a voice description record. In addition to duplicating the
capabilities of the GetVoiceDescription function, the GetVoiceInfo function
allows you to obtain information about where on disk a voice is stored.

Trap macro Selector

_SoundDispatch $0238000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad
Speech Manager Reference 4-63

C H A P T E R 4

Speech Manager
MakeVoiceSpec 4

To set the fields of a voice specification record, you should use the MakeVoiceSpec
function. You should never set the fields of such a record directly.

FUNCTION MakeVoiceSpec (creator: OSType; id: OSType;

voice: VoiceSpecPtr): OSErr;

creator The ID of the synthesizer that your application requires.

id The ID of the voice on the synthesizer specified by the creator
parameter.

voice A pointer to the voice specification record whose fields are to be filled in.

DESCRIPTION

A voice specification record is a unique voice ID used by the Speech Manager. Most
voice management routines expect to be passed a pointer to a voice specification
record. When you already know the creator and ID for a voice, you should use the
MakeVoiceSpec function to create such a record rather than filling in the fields of
one directly. On exit, the voice specification record pointed to by the voice parameter
contains the appropriate values.

SPECIAL CONSIDERATIONS

You can call the MakeVoiceSpec function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the MakeVoiceSpec function are

RESULT CODES

CountVoices 4

You can determine how many voices are available by calling the CountVoices function.

FUNCTION CountVoices (VAR numVoices: Integer): OSErr;

numVoices On exit, the number of voices that the application can use.

Trap macro Selector

_SoundDispatch $0604000C

noErr 0 No error
4-64 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
DESCRIPTION

The CountVoices function returns, in the numVoices parameter, the number of voices
available. The application can then use this information to call the GetIndVoice
function, described next, to obtain voice specification records for one or more of
the voices.

Each time CountVoices is called, the Speech Manager searches for new voices.

SPECIAL CONSIDERATIONS

Because the CountVoices function moves memory, you should not call it at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the CountVoices function are

RESULT CODES

GetIndVoice 4

You can obtain a voice specification record for a voice by passing an index to the
GetIndVoice function.

FUNCTION GetIndVoice (index: Integer; voice: VoiceSpecPtr): OSErr;

index The index of the voice for which to obtain a voice specification record.
This number must range from 1 to the total number of voices, as returned
by the CountVoices function.

voice A pointer to the voice specification record whose fields are to be filled in.

DESCRIPTION

The GetIndVoice function returns, in the voice specification record pointed to by the
voice parameter, a specification of the voice whose index is provided in the index
parameter. Your application should make no assumptions about the order in which
voices are indexed.

Trap macro Selector

_SoundDispatch $0108000C

noErr 0 No error
Speech Manager Reference 4-65

C H A P T E R 4

Speech Manager
▲ W A R N I N G

Your application should not add, remove, or modify a voice and then
call the GetIndVoice function with an index value other than 1. To
allow the Speech Manager to update its information about voices, your
application should always either call the CountVoices function or call
the GetIndVoice function with an index value of 1 after adding,
removing, or modifying a voice or after a time at which the user might
have done so. ▲

If you specify an index value beyond the number of available voices, the GetIndVoice
function returns a voiceNotFound error.

SPECIAL CONSIDERATIONS

Because the GetIndVoice function moves memory, you should not call it at interrupt
time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetIndVoice function are

RESULT CODES

GetVoiceDescription 4

You can obtain a description of a voice by using the GetVoiceDescription function.

FUNCTION GetVoiceDescription (voice: VoiceSpecPtr;

info: VoiceDescriptionPtr;

infoLength: LongInt): OSErr;

voice A pointer to the voice specification record identifying the voice to be
described, or NULL to obtain a description of the system default voice.

info A pointer to a voice description record. If this parameter is NULL, the
function does not fill in the fields of the voice description record; instead,
it simply determines whether the voice parameter specifies an available
voice and, if not, returns a voiceNotFound error.

Trap macro Selector

_SoundDispatch $030C000C

noErr 0 No error
voiceNotFound –244 Voice resource not found
4-66 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
infoLength
The length, in bytes, of the voice description record. In the current version
of the Speech Manager, the voice description record contains 362 bytes.
However, you should always use the SizeOf function to determine the
length of this record.

DESCRIPTION

The GetVoiceDescription function fills out the voice description record pointed to
by the info parameter with the correct information for the voice specified by the voice
parameter. It fills in the length field of the voice description record with the number of
bytes actually copied. This value will always be less than or equal to the value that your
application passes in infoLength before calling GetVoiceDescription. This scheme
allows applications targeted for the current version of the Speech Manager to work on
future versions that might have longer voice description records; it also allows you to
write code for future versions of the Speech Manager that will also run on computers
that support only the current version.

If the voice specification record does not identify an available voice,
GetVoiceDescription returns a voiceNotFound error.

SPECIAL CONSIDERATIONS

Because the GetVoiceDescription function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetVoiceDescription function are

RESULT CODES

GetVoiceInfo 4

You can use the GetVoiceInfo function to obtain the same information about a voice
that the GetVoiceDescription function provides or to determine in which file and

Trap macro Selector

_SoundDispatch $0610000C

noErr 0 No error
paramErr –50 Parameter error
memFullErr –108 Not enough memory to load voice into memory
voiceNotFound –244 Voice resource not found
Speech Manager Reference 4-67

C H A P T E R 4

Speech Manager
resource a voice is stored. This function is intended primarily for use by synthesizers, but
an application can call it too.

FUNCTION GetVoiceInfo (voice: VoiceSpecPtr; selector: OSType;

voiceInfo: Ptr): OSErr;

voice A pointer to the voice specification record identifying the voice about
which your application requires information, or NIL to obtain
information on the system default voice.

selector A specification of the type of data being requested. For current
versions of the Speech Manager, you should set this field either to
soVoiceDescription, if you would like to use the GetVoiceInfo
function to mimic the GetVoiceDescription function, or to
soVoiceFile, if you would like to obtain information about the
location of a voice on disk.

voiceInfo A pointer to the appropriate data structure. If the selector is
soVoiceDescription, then voiceInfo should be a pointer to a voice
description record, and the length field of the record should be set to the
length of the voice description record. If the selector is soVoiceFile,
then voiceInfo should be a pointer to a voice file information record.

DESCRIPTION

The GetVoiceInfo function accepts a selector in the selector parameter that
determines the type of information you wish to obtain about the voice specified in the
voice parameter. The function then fills the fields of the data structure appropriate to
the selector you specify in the voiceInfo parameter.

If the voice specification is invalid, GetVoiceInfo returns a voiceNotFound error. If
there is not enough memory to load the voice into memory to obtain information about
it, GetVoiceInfo returns the result code memFullErr.

SPECIAL CONSIDERATIONS

Because the GetVoiceInfo function might move memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetVoiceInfo function are

RESULT CODES

Trap macro Selector

_SoundDispatch $0614000C

noErr 0 No error
memFullErr –108 Not enough memory to load voice into memory
voiceNotFound –244 Voice resource not found
4-68 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Managing Speech Channels 4

To take advantage of any but the most rudimentary of the Speech Manager’s capabilities,
you need to use speech channels. However, you cannot create a speech channel simply
by declaring a variable of type SpeechChannel. Before your application calls any
routine that requires a speech channel as a parameter, you must call the
NewSpeechChannel function to allow the Speech Manager to allocate memory
associated with the speech channel. Later, you can release the memory occupied
by a speech channel by calling the DisposeSpeechChannel function. In general,
it is a good idea to create a speech channel just before you need it and then dispose
of it as soon as you have finished processing speech through it.

NewSpeechChannel 4

You can use the NewSpeechChannel function to create a new speech channel.

FUNCTION NewSpeechChannel (voice: VoiceSpecPtr;

VAR chan: SpeechChannel): OSErr;

voice A pointer to the voice specification record corresponding to the voice to
be used for the new speech channel. Pass NIL to create a speech channel
using the system default voice.

chan On exit, a valid speech channel.

DESCRIPTION

The NewSpeechChannel function allocates memory for a speech channel record and
sets the speech channel variable pointed to by the chan parameter to point to this speech
channel record. The Speech Manager automatically locates and opens a connection to the
proper synthesizer for the voice specified by the voice parameter.

There is no predefined limit to the number of speech channels an application can create.
However, system constraints on available RAM, processor loading, and number of
available sound channels limit the number of speech channels actually possible.

▲ W A R N I N G

Your application should not attempt to manipulate the data pointed to
by a variable of type SpeechChannel. The internal format that the
Speech Manager uses for speech channel data is not documented and
may change in future versions of system software. ▲

SPECIAL CONSIDERATIONS

Because the NewSpeechChannel function allocates memory, you should not call it at
interrupt time.
Speech Manager Reference 4-69

C H A P T E R 4

Speech Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewSpeechChannel function are

RESULT CODES

DisposeSpeechChannel 4

You can use the DisposeSpeechChannel function to dispose of an existing speech
channel.

FUNCTION DisposeSpeechChannel (chan: SpeechChannel): OSErr;

chan The speech channel to dispose of.

DESCRIPTION

The DisposeSpeechChannel function disposes of the speech channel specified in the
chan parameter and releases all memory the channel occupies. If the speech channel
specified is producing speech, then the DisposeSpeechChannel function immediately
stops speech before disposing of the channel. If you have defined a text-done callback
procedure or a speech-done callback procedure, the procedure will not be called before
the channel is disposed of.

The Speech Manager releases any speech channels that have not been explicitly disposed
of by an application when the application quits. In general, however, your application
should dispose of any speech channels it has created whenever it receives a suspend
event. This ensures that other applications can take full advantage of Speech Manager
and Sound Manager capabilities.

SPECIAL CONSIDERATIONS

Because the DisposeSpeechChannel function might purge memory, you should not
call it at interrupt time.

Trap macro Selector

_SoundDispatch $0418000C

noErr 0 No error
memFullErr –108 Not enough memory to open speech channel
synthOpenFailed –241 Could not open another speech synthesizer channel
voiceNotFound –244 Voice resource not found
4-70 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DisposeSpeechChannel function are

RESULT CODES

Obtaining Information About Speech 4

Once you have determined with the Gestalt Manager that the Speech Manager is
present, you can use the SpeechManagerVersion function to determine what version
is available.

To determine how many speech channels are currently processing speech in your
application, you can use the SpeechBusy function. To determine how many are
processing speech in your application and other processes, you can use the
SpeechBusySystemWide function.

SpeechManagerVersion 4

You can use the SpeechManagerVersion function to determine the current version of
the Speech Manager installed in the system.

FUNCTION SpeechManagerVersion: NumVersion;

DESCRIPTION

The SpeechManagerVersion function returns the version of the Speech Manager
installed in the system, in the format of the first 4 bytes of a 'vers' resource. You can
use this call to determine whether your program can access features of the Speech
Manager that are included in some Speech Manager releases but not in earlier ones.
Note, however, that because this chapter documents the initial release of the Speech
Manager, all features and techniques described in this chapter should be available in
all versions of the Speech Manager.

SPECIAL CONSIDERATIONS

You can call the SpeechManagerVersion function at interrupt time.

Trap macro Selector

_SoundDispatch $021C000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad
Speech Manager Reference 4-71

C H A P T E R 4

Speech Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechManagerVersion function are

SpeechBusy 4

You can use the SpeechBusy function to determine whether any channels of speech are
currently synthesizing speech.

FUNCTION SpeechBusy: Integer;

DESCRIPTION

The SpeechBusy function returns the number of speech channels that are currently
synthesizing speech in the application. This is useful when you want to ensure that an
earlier speech request has been completed before having the system speak again. Note
that paused speech channels are counted among those that are synthesizing speech.

The speech channel that the Speech Manager allocates internally in response to calls to
the SpeakString function is counted in the number returned by SpeechBusy. Thus, if
you use just SpeakString to initiate speech, SpeechBusy always returns 1 as long as
speech is being produced. When SpeechBusy returns 0, all speech has finished.

SPECIAL CONSIDERATIONS

You can call the SpeechBusy function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechBusy function are

SpeechBusySystemWide 4

You can use the SpeechBusySystemWide function to determine if any speech is
currently being synthesized in your application or elsewhere on the computer.

FUNCTION SpeechBusySystemWide: Integer;

Trap macro Selector

_SoundDispatch $0000000C

Trap macro Selector

_SoundDispatch $003C000C
4-72 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
DESCRIPTION

The SpeechBusySystemWide function returns the total number of speech channels
currently synthesizing speech on the computer, whether they were initiated by your
application or process’s code or by some other process executing concurrently. Note that
paused speech channels are counted among those channels that are synthesizing speech.

This function is useful when you want to ensure that no speech is currently being
produced anywhere on the Macintosh computer before initiating speech. Although the
Speech Manager allows different applications to produce speech simultaneously, this can
be confusing to the user. As a result, it is often a good idea for your application to check
that no other process is producing speech before producing speech itself. If the difference
between the values returned by SpeechBusySystemWide and the SpeechBusy
function is 0, no other process is producing speech.

SPECIAL CONSIDERATIONS

You can call the SpeechBusySystemWide function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SpeechBusySystemWide function are

Changing Speech Attributes 4

To determine the rate and pitch at which a speech channel is processing text, you can use
the GetSpeechRate and GetSpeechPitch functions. The SetSpeechRate and
SetSpeechPitch functions allow you to change rate and pitch.

The most robust of the Speech Manager’s routines are the GetSpeechInfo and
SetSpeechInfo functions. These allow you to obtain many types of information
about a speech channel and to change many settings of a speech channel. To specify
the operation that you wish to perform, you must pass GetSpeechInfo or
SetSpeechInfo a selector. A full list of selectors is provided in “Speech Information
Selectors” beginning on page 4-39.

GetSpeechRate 4

You use the GetSpeechRate function to obtain a speech channel’s current speech rate.

FUNCTION GetSpeechRate (chan: SpeechChannel; VAR rate: Fixed)

: OSErr;

chan The speech channel whose rate you wish to determine.

Trap macro Selector

_SoundDispatch $0040000C
Speech Manager Reference 4-73

C H A P T E R 4

Speech Manager
rate On exit, the speech channel’s speech rate, expressed as a fixed-point,
words-per-minute value.

DESCRIPTION

The GetSpeechRate function returns, in the rate parameter, the speech rate of the
speech channel specified by the chan parameter.

SPECIAL CONSIDERATIONS

You can call the GetSpeechRate function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSpeechRate function are

RESULT CODES

SetSpeechRate 4

You can set the speech rate of a designated speech channel with the SetSpeechRate
function.

FUNCTION SetSpeechRate (chan: SpeechChannel; rate: Fixed): OSErr;

chan The speech channel whose rate you wish to set.

rate The new speech rate for the speech channel, expressed as a fixed-point,
words-per-minute value.

DESCRIPTION

The SetSpeechRate function adjusts the speech rate on the speech channel specified
by the chan parameter to the rate specified by the rate parameter. As a general rule,
typical speaking rates range from around 150 words per minute to around 180 words per
minute. It is important to keep in mind, however, that users will differ greatly in their
ability to understand synthesized speech at a particular rate based upon their level of
experience listening to the voice and their ability to anticipate the types of utterances
they will encounter.

Trap macro Selector

_SoundDispatch $0448000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad
4-74 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
SPECIAL CONSIDERATIONS

You can call the SetSpeechRate function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSpeechRate function are

RESULT CODES

GetSpeechPitch 4

You can determine a speech channel’s current speech pitch by using the
GetSpeechPitch function.

FUNCTION GetSpeechPitch (chan: SpeechChannel; VAR pitch: Fixed)

: OSErr;

chan The speech channel whose pitch you wish to determine.

pitch On exit, the current pitch of the voice in the speech channel, expressed as
a fixed-point frequency value.

DESCRIPTION

The GetSpeechPitch function returns, in the pitch parameter, the pitch of the speech
channel specified by the chan parameter. Typical voice frequencies range from around
90 hertz for a low-pitched male voice to perhaps 300 hertz for a high-pitched child’s
voice. These frequencies correspond to approximate pitch values in the ranges of
30.000 to 40.000 and 55.000 to 65.000, respectively. For information about the
mathematical relationship between pitches and frequencies expressed in hertz,
see “Speech Attributes” beginning on page 4-6.

SPECIAL CONSIDERATIONS

You can call the GetSpeechPitch function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSpeechPitch function are

Trap macro Selector

_SoundDispatch $0444000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

Trap macro Selector

_SoundDispatch $0450000C
Speech Manager Reference 4-75

C H A P T E R 4

Speech Manager
RESULT CODES

SetSpeechPitch 4

You can use the SetSpeechPitch function to set the speech pitch on a designated
speech channel.

FUNCTION SetSpeechPitch (chan: SpeechChannel; pitch: Fixed)

: OSErr;

chan The speech channel whose pitch you wish to set.

pitch The new pitch for the speech channel, expressed as a fixed-point
frequency value.

DESCRIPTION

The SetSpeechPitch function changes the current speech pitch on the speech channel
specified by the chan parameter to the pitch specified by the pitch parameter. Typical
voice frequencies range from around 90 hertz for a low-pitched male voice to perhaps
300 hertz for a high-pitched child’s voice. These frequencies correspond to approximate
pitch values in the ranges of 30.000 to 40.000 and 55.000 to 65.000, respectively. For
information about the mathematical relationship between pitches and frequencies
expressed in hertz, see “Speech Attributes” beginning on page 4-6. Although fixed-point
values allow you to specify a wide range of pitches, not all synthesizers will support the
full range of pitches. If your application specifies a pitch that a synthesizer cannot
handle, it may adjust the pitch to fit within an acceptable range.

SPECIAL CONSIDERATIONS

You can call the SetSpeechPitch function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSpeechPitch function are

RESULT CODES

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad

Trap macro Selector

_SoundDispatch $044C000C

noErr 0 No error
invalidComponentID –3000 Speech channel is uninitialized or bad
4-76 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
GetSpeechInfo 4

You can use the GetSpeechInfo function to obtain information about a designated
speech channel.

FUNCTION GetSpeechInfo (chan: SpeechChannel; selector: OSType;

speechInfo: Ptr): OSErr;

chan The speech channel about which information is being requested.

selector A speech information selector that indicates the type of information being
requested.

speechInfo
A pointer whose meaning depends on the speech information selector
specified in the selector parameter.

DESCRIPTION

The GetSpeechInfo function returns, in the data structure pointed to by the
speechInfo parameter, the type of information requested by the selector parameter
as it applies to the speech channel specified in the chan parameter.

The format of the data structure specified by the speechInfo parameter depends on
the selector you choose. For example, a selector might require that your application
allocate a block of memory of a certain size and pass a pointer to that block. Another
selector might require that speechInfo be set to the address of a handle variable. In
this case, the GetSpeechInfo function would allocate a relocatable block of memory
and change the handle variable specified to reference the block.

SPECIAL CONSIDERATIONS

You can call the GetSpeechInfo function at interrupt time only if the speech
information selector specified in the selector parameter does not move or purge
memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSpeechInfo function are

RESULT CODES

Trap macro Selector

_SoundDispatch $0658000C

noErr 0 No error
siUnknownInfoType –231 Feature is not implemented on synthesizer
invalidComponentID –3000 Speech channel is uninitialized or bad
Speech Manager Reference 4-77

C H A P T E R 4

Speech Manager
SEE ALSO

For a complete list of speech information selectors, see “Speech Information Selectors”
beginning on page 4-39. This list indicates how your application should set the
speechInfo parameter for each selector and indicates which selectors might cause
memory to be moved or purged.

SetSpeechInfo 4

You can use the SetSpeechInfo function to change a setting of a particular speech
channel.

FUNCTION SetSpeechInfo (chan: SpeechChannel; selector: OSType;

speechInfo: Ptr): OSErr;

chan The speech channel for which your application wishes to change a setting.

selector A speech information selector that indicates the type of information being
changed.

speechInfo
A pointer whose meaning depends on the speech information selector
specified in the selector parameter.

DESCRIPTION

The SetSpeechInfo function changes the type of setting indicated by the selector
parameter in the speech channel specified by the chan parameter, based on the data your
application provides via the speechInfo parameter.

The format of the data structure specified by the speechInfo parameter depends on
the selector you choose. Ordinarily, a selector requires that speechInfo be a pointer to
a data structure that specifies a new setting for the speech channel.

SPECIAL CONSIDERATIONS

You can call the SetSpeechInfo function at interrupt time only if the speech
information selector specified in the selector parameter does not move or purge
memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSpeechInfo function are

Trap macro Selector

_SoundDispatch $0654000C
4-78 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
RESULT CODES

SEE ALSO

For a complete list of speech information selectors, see “Speech Information Selectors”
beginning on page 4-39. This list indicates how your application should set the
speechInfo parameter for each selector and indicates which selectors might cause
memory to be moved or purged.

Converting Text To Phonemes 4

The Speech Manager provides a utility routine, the TextToPhonemes function, to
convert textual data into phonetic data. This is particularly useful during application
development, when you might wish to adjust phrases that your application generates to
produce smoother speech. By first converting the target phrase into phonemes, you can
see what the synthesizer will try to speak. Then you need correct only the parts that
would not have been spoken the way you want.

TextToPhonemes 4

You can use the TextToPhonemes function to convert textual data into phonemic data.

FUNCTION TextToPhonemes (chan: SpeechChannel; textBuf: Ptr;

textBytes: LongInt; phonemeBuf: Handle;

VAR phonemeBytes: LongInt): OSErr;

chan A speech channel whose associated synthesizer and voice are to be used
for the conversion process.

textBuf A pointer to a buffer of text to be converted.

textBytes The number of bytes of text to be converted.

phonemeBuf
A handle to a buffer to be used to store the phonemic data. The
TextToPhonemes function may resize the relocatable block referenced
by this handle.

phonemeBytes
On exit, the number of bytes of phonemic data written to the handle.

noErr 0 No error
paramErr –50 Parameter value is invalid
siUnknownInfoType –231 Feature is not implemented on synthesizer
incompatibleVoice –245 Specified voice cannot be used with synthesizer
invalidComponentID –3000 Speech channel is uninitialized or bad
Speech Manager Reference 4-79

C H A P T E R 4

Speech Manager
DESCRIPTION

The TextToPhonemes function converts the textBytes bytes of textual data pointed
to by the textBuf parameter to phonemic data, which it writes into the relocatable
block specified by the phonemeBuf parameter. If necessary, TextToPhonemes resizes
this relocatable block. The TextToPhonemes function sets the phonemeBytes
parameter to the number of bytes of phonetic data actually written.

▲ W A R N I N G

If the textual data is contained in a relocatable block, a handle to that
block must be locked before the TextToPhonemes function is called. ▲

The data returned by TextToPhonemes corresponds precisely to the phonemes that
would be spoken had the input text been sent to SpeakText instead. All current mode
settings for the speech channel specified by chan are applied to the converted speech.
No callbacks are generated while the TextToPhonemes routine is generating its output.

SPECIAL CONSIDERATIONS

Because the TextToPhonemes function might move memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the TextToPhonemes function are

RESULT CODES

Installing a Pronunciation Dictionary 4

Pronunciation dictionaries allow your application to override the default Speech
Manager pronunciations of individual words, such as names with quirky spellings. The
UseDictionary function allows your application to load a pronunciation dictionary
into a speech channel.

Trap macro Selector

_SoundDispatch $0A5C000C

noErr 0 No error
paramErr –50 Parameter value is invalid
nilHandleErr –109 Handle argument is NIL
siUnknownInfoType –231 Feature not implemented on synthesizer
invalidComponentID –3000 Speech channel is uninitialized or bad
4-80 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
UseDictionary 4

You can use the UseDictionary function to install a designated dictionary into a
speech channel.

FUNCTION UseDictionary (chan: SpeechChannel; dictionary: Handle)

: OSErr;

chan The speech channel into which a dictionary is to be installed.

dictionary
A handle to the dictionary data. This is often a handle to a resource of
type 'dict'.

DESCRIPTION

The UseDictionary function attempts to install the dictionary data referenced by the
dictionary parameter into the speech channel referenced by the chan parameter. The
synthesizer will use whatever elements of the dictionary resource it considers useful to
the speech conversion process. Some speech synthesizers might ignore certain types of
dictionary entries.

After the UseDictionary function returns, your application is free to release any
storage allocated for the dictionary handle. The search order for application-provided
dictionaries is last-in, first-searched.

All details of how an application-provided dictionary is represented within the speech
synthesizer are dependent on the specific synthesizer implementation and are private to
the synthesizer.

SPECIAL CONSIDERATIONS

Because the UseDictionary function might move memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UseDictionary function are

RESULT CODES

Trap macro Selector

_SoundDispatch $0460000C

noErr 0 No error
memFullErr –108 Not enough memory to use new dictionary
badDictFormat –246 Pronunciation dictionary format error
invalidComponentID –3000 Speech channel is uninitialized or bad
Speech Manager Reference 4-81

C H A P T E R 4

Speech Manager
SEE ALSO

For a description of the format of a pronunciation dictionary, see “The Pronunciation
Dictionary Resource” on page 4-89. For a discussion of how you might manipulate a
dictionary in memory, see “Including Pronunciation Dictionaries” beginning on
page 4-36.

Application-Defined Routines 4
The Speech Manager allows you to define callback procedures that execute

■ when text input processing is complete (but not necessarily after speech has stopped)

■ when text has been completely processed and spoken

■ whenever the Speech Manager encounters an embedded synchronization command

■ whenever the Speech Manager encounters an error in processing embedded speech
commands

■ whenever a phoneme is about to be spoken

■ whenever a word is about to be spoken

▲ W A R N I N G

When the Speech Manager executes a callback procedure, the Speech
Manager sets the A5 register to the value specified by the most recent
call to the SetSpeechInfo function with the soCurrentA5 selector.
However, if the most recent value specified with the soCurrentA5
selector is NIL or if your application has not yet specified a value, then
the Speech Manager leaves the A5 register unchanged. In this case, the
callback procedure cannot access application global variables because
it executes at interrupt time. For code showing how to use the
soCurrentA5 selector to ensure that the A5 register is set to your
application’s A5, see Listing 4-6 on page 4-21. ▲

Text-Done Callback Procedure 4

You can specify a text-done callback procedure by passing the soTextDoneCallBack
selector to the SetSpeechInfo function.

MyTextDoneCallback 4

A text-done callback procedure has the following syntax:

PROCEDURE MyTextDoneCallback

(chan: SpeechChannel; refCon: LongInt;

VAR nextBuf: Ptr; VAR byteLen: LongInt;

VAR controlFlags: LongInt);
4-82 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

nextBuf On exit, a pointer to the next buffer of text to process or NIL if your
application has no additional text to be spoken. This parameter is mostly
for internal use by the Speech Manager.

byteLen On exit, the number of bytes of the text buffer pointed to by the nextBuf
parameter.

controlFlags
On exit, the control flags to be used in generating the next buffer of text.

 DESCRIPTION

If a text-done callback procedure is installed in a speech channel, then the Speech
Manager calls this procedure when it finishes processing a buffer of text. The Speech
Manager might not yet have completed finishing speaking the text and indeed might not
have started speaking it.

A common use of a text-done callback procedure is to alert your application once the text
passed to the SpeakText or SpeakBuffer function can be disposed of (or, when the
text is contained within a locked relocatable block, when the relocatable block can be
unlocked). The Speech Manager copies the text you pass to the SpeakText or
SpeakBuffer function into an internal buffer. Once it has finished processing the text,
you may dispose of the original text buffer, even if speech is not yet complete. However,
if you wish to write a callback procedure that executes when speech is completed, see
the definition of a speech-done callback procedure below.

Although most applications won’t need to, your callback procedure can indicate to the
Speech Manager whether there is another buffer of text to speak. If there is another
buffer, your callback procedure should reference it by setting the nextBuf and byteLen
parameters to appropriate values. (Your callback procedure might also change the
control flags to be used to process the speech by altering the value in the controlFlags
parameter.) Setting these parameters allows the Speech Manager to generate
uninterrupted speech. If there is no more text to speak, your callback procedure should
set nextBuf to NIL. In this case, the Speech Manager ignores the byteLen and
controlFlags parameters.

If your text-done callback procedure does not change the values of the nextBuf and
byteLen parameters, the text buffer just spoken will be spoken again.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any
routines that might move or purge memory. If you are writing a callback procedure
so that your application will know when it can dispose of a text buffer, then use the
callback procedure to set a global flag variable. Your application’s main event loop can
check this flag and dispose of the text buffer if it is set.

Your callback procedure is able to access application global variables only if the A5
register is properly set. The Speech Manager sets A5 to the proper value if you provide
Speech Manager Reference 4-83

C H A P T E R 4

Speech Manager
your application’s A5 value by calling the SetSpeechInfo function with the
soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0–A2 and D0–D2.

Speech-Done Callback Procedure 4

You can specify a speech-done callback procedure by passing the
soSpeechDoneCallBack selector to the SetSpeechInfo function.

MySpeechDoneCallback 4

A speech-done callback procedure has the following syntax:

PROCEDURE MySpeechDoneCallback (chan: SpeechChannel;

refCon: LongInt);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

DESCRIPTION

If a speech-done callback procedure is installed in a speech channel, then the Speech
Manager calls this procedure when it finishes speaking a buffer of text.

You might use a speech-done callback procedure if you need to update some visual
indicator that shows what text is currently being spoken. For example, suppose your
application passes text buffers to the Speech Manager one paragraph at a time. Your
speech-done callback procedure might set a global flag variable to indicate to the
application that the Speech Manager has finished speaking a paragraph. When a routine
called by your application’s main event loop checks the global flag variable and
determines that it has been set, the routine might ensure that the next paragraph of text
is visible.

You might use a speech-done callback procedure to set a flag variable that alerts the
application that it should pass a new buffer of text to the Speech Manager. If you do so,
however, there might be a noticeable pause as the Speech Manager switches from
processing one text buffer to another. Ordinarily, it is easier to achieve this goal by using
a text-done callback procedure, as described earlier.
4-84 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any
routines that might move or purge memory.

Your callback procedure is able to access application global variables only if the A5
register is properly set. The Speech Manager sets A5 to the proper value if you provide
your application’s A5 value by calling the SetSpeechInfo function with the
soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0–A2 and D0–D2.

Synchronization Callback Procedure 4

You can specify a synchronization callback procedure by passing the soSyncCallBack
selector to the SetSpeechInfo function and embedding a synchronization command
within a text buffer passed to the SpeakText or SpeakBuffer function.

MySynchronizationCallback 4

A synchronization callback procedure has the following syntax:

PROCEDURE MySynchronizationCallback (chan: SpeechChannel;

refCon: LongInt;

syncMessage: OSType);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

syncMessage
The synchronization message passed in the embedded command.
Usually, you use this message to distinguish between several different
types of synchronization commands, but you can use it any way you wish.

DESCRIPTION

The Speech Manager calls a speech channel’s synchronization callback procedure
whenever it encounters a synchronization command embedded in a text buffer. You
might use the synchronization callback procedure to provide a callback not ordinarily
provided. For example, you might inset synchronization commands at the end of every
sentence in a text buffer, or you might enter synchronization commands after every
numeric value in the text. However, to synchronize your application with phonemes or
words, it makes more sense to use the built-in phoneme and word callback procedures,
Speech Manager Reference 4-85

C H A P T E R 4

Speech Manager
defined in “Phoneme Callback Procedure” on page 4-87 and “Word Callback Procedure”
on page 4-88.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any
routines that might move or purge memory. If you need to make a visual change in
response to a synchronization command, then use the callback procedure to set a global
flag variable. Your application’s main event loop can check this flag and update the
screen display if it is set.

Your callback procedure is able to access application global variables only if the A5
register is properly set. The Speech Manager sets A5 to the proper value if you provide
your application’s A5 value by calling the SetSpeechInfo function with the
soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0–A2 and D0–D2.

Error Callback Procedure 4

You can specify an error callback procedure by passing the soErrorCallBack selector
to the SetSpeechInfo function.

MyErrorCallback 4

An error callback procedure has the following syntax:

PROCEDURE MyErrorCallback (chan: SpeechChannel; refCon: LongInt;

error: OSErr; bytePos: LongInt);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

error The error that occurred in processing an embedded command.

bytePos The number of bytes from the beginning of the text buffer being spoken to
the error encountered.

DESCRIPTION

The Speech Manager calls a speech channel’s error callback procedure whenever it
encounters a syntax error within a command embedded in a text buffer it is processing.
This can be useful during application debugging, to detect problems with commands
that you have embedded in text buffers that your application speaks. It can also be
4-86 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
useful if your application allows users to embed commands within text buffers. Your
application might display an alert indicating that the Speech Manager encountered a
problem in processing an embedded command.

Ordinarily, the error information that the Speech Manager provides the error callback
procedure should be sufficient. However, if your application needs information about
errors that occurred before the error callback procedure was enabled, the application
(including the error callback procedure) can call the GetSpeechInfo function with the
soErrors selector.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any
routines that might move or purge memory. If you need to display an alert box to the
user, then use the callback procedure to set a global flag variable. Your application’s
main event loop can check this flag and display the alert box if it is set.

Your callback procedure is able to access application global variables only if the A5
register is properly set. The Speech Manager sets A5 to the proper value if you provide
your application’s A5 value by calling the SetSpeechInfo function with the
soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0–A2 and D0–D2.

Phoneme Callback Procedure 4

You can specify a phoneme callback procedure by passing the soPhonemeCallBack
selector to the SetSpeechInfo function.

MyPhonemeCallback 4

A phoneme callback procedure has the following syntax:

PROCEDURE MyPhonemeCallback (chan: SpeechChannel; refCon: LongInt;

phonemeOpcode: Integer);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

phonemeOpcode
The phoneme about to be pronounced.
Speech Manager Reference 4-87

C H A P T E R 4

Speech Manager
DESCRIPTION

The Speech Manager calls a speech channel’s phoneme callback procedure just before
it pronounces a phoneme. For example, your application might use such a callback
procedure to enable mouth synchronization. In this case, the callback procedure would
set a global flag variable to indicate that the phoneme being pronounced is changing and
another global variable to phonemeOpcode. A routine called by your application’s main
event loop could detect that the phoneme being pronounced is changing and update
a picture of a mouth to reflect the current phoneme. In practice, providing a visual
indication of the pronunciation of a phoneme requires several consecutive pictures of
mouth movement to be rapidly displayed. Consult the linguistics literature for
information on mouth movements associated with different phonemes.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any
routines that might move or purge memory.

Your callback procedure is able to access application global variables only if the A5
register is properly set. The Speech Manager sets A5 to the proper value if you provide
your application’s A5 value by calling the SetSpeechInfo function with the
soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0–A2 and D0–D2.

Word Callback Procedure 4

You can specify a word callback procedure by passing the soWordCallBack selector to
the SetSpeechInfo function.

MyWordCallback 4

A word callback procedure has the following syntax:

PROCEDURE MyWordCallback (chan: SpeechChannel; refCon: LongInt;

wordPos: LongInt; wordLen: Integer);

chan The speech channel that has finished processing input text.

refCon The reference constant associated with the speech channel.

wordPos The number of bytes between the beginning of the text buffer and the
beginning of the word about to be pronounced.

wordLen The length in bytes of the word about to be pronounced.
4-88 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
DESCRIPTION

The Speech Manager calls a speech channel’s word callback procedure just before it
pronounces a word. You might use such a callback procedure, for example, to draw the
word about to be spoken in a window. In this case, the callback procedure would set a
global flag variable to indicate that the word being spoken is changing and another two
global variables to wordPos and wordLen. A routine called by your application’s main
event loop could detect that the word being spoken is changing and draw the word in
a window.

SPECIAL CONSIDERATIONS

Because your callback procedure executes at interrupt time, you must not call any
routines that might move or purge memory.

Your callback procedure is able to access application global variables only if the A5
register is properly set. The Speech Manager sets A5 to the proper value if you provide
your application’s A5 value by calling the SetSpeechInfo function with the
soCurrentA5 selector.

ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0–A2 and D0–D2.

Resources 4
This section describes the format of a pronunciation dictionary resource, which the
Speech Manager uses to override its default pronunciation of words. The Speech
Manager uses pronunciation rules as well as an internal dictionary (not stored in the
same format as pronunciation dictionary resources) to determine how to pronounce
words not included in a speech channel’s installed pronunciation dictionaries. For an
introduction to the use of and examples showing how your application can install and
manipulate pronunciation dictionaries, see “Including Pronunciation Dictionaries”
beginning on page 4-36.

This section does not describe the format of voice resources or speech synthesizer
resources, because you should not need to access them directly.

The Pronunciation Dictionary Resource 4

You can store a list of words and their associated pronunciations in a resource of
resource type 'dict'. You can associate any number of dictionary resources with a
speech channel. Before using its internal rules to pronounce a word, the Speech Manager
searches the dictionary resources that your application has associated with the speech
channel in a last-in, first-searched order.
Speech Manager Reference 4-89

C H A P T E R 4

Speech Manager
Note
Because your application is responsible for loading data from a
pronunciation dictionary into memory, you can, if desired, store
pronunciation information in the data fork of a file rather than in the
resource fork. Also, you can devise your own format in which to store
pronunciation data, as long as you convert that data into the format
described in this section before calling the UseDictionary function. ◆

Figure 4-5 shows the format of a pronunciation dictionary resource.

Figure 4-5 Format of a pronunciation dictionary resource

Length of resource

'dict' resource type Bytes

4

Atom type 4

Format version 4

Script code 2

Language code 2

Region code 2

Modification date 4

Reserved 16

Dictionary entry count 4

First dictionary entry Variable

Last dictionary entry Variable
4-90 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Note
Some synthesizers might use resources (such as resources of type
'ttsd') to store their internal pronunciation dictionaries. These
internal dictionaries are not necessarily in the same format as the
pronunciation dictionaries described here. ◆

To define a dictionary resource, you ordinarily use a resource of type 'dict'. Such
a resource contains a pronunciation dictionary resource header, which is at the start of
the resource and defines characteristics of the dictionary as a whole, and any number
of pronunciation dictionary entries. Each pronunciation dictionary entry corresponds
to one word and contains one or more pronunciation dictionary entry fields. Each
pronunciation dictionary entry field contains one piece of information about the word
being described in the entry; for example, a dictionary entry would include a field with
a textual representation of the word.

The pronunciation dictionary resource header includes the following:

■ Total byte length. The total number of bytes of the dictionary, including the entire
pronunciation dictionary resource header in addition to the dictionary’s entries.

■ Atom type. The currently defined atom type is 'dict'. Future versions of the Speech
Manager might define additional atom types for other types of dictionaries.

■ Format version. The currently defined format version is 1. Future versions of the
Speech Manager might support additional format versions for the 'dict' atom type.

■ Script code. The script code of words defined in the pronunciation dictionary (for
example, smRoman). All words in a dictionary must be in the same script.

■ Language code. The language code of words defined in the pronunciation dictionary
(for example, langEnglish). All words in a dictionary must be in the same language.

■ Region code. The region code of pronunciations in the dictionary (for example,
verUS). All words in a dictionary must target the same region.

■ Date last modified. The number of seconds between midnight, January 1, 1904, and
the modification time. You can use the GetDateTime procedure to determine the
number of seconds between midnight, January 1, 1904, and the current time. For more
information, see Inside Macintosh: Operating System Utilities.

■ Reserved. These 16 bytes are reserved for future use. You should set them to 0.

■ Entry count. The number of dictionary entries.

Immediately following the pronunciation dictionary resource header is a list of the
pronunciation dictionary entries.

Figure 4-6 shows the format of a pronunciation dictionary entry.
Speech Manager Reference 4-91

C H A P T E R 4

Speech Manager
Figure 4-6 Format of a dictionary entry in a dictionary resource

Each pronunciation dictionary entry consists of the following:

■ Entry byte length. The total number of bytes in the entry, including this word.

■ Entry type. A code for the type of pronunciation dictionary entry. The code $0000
represents a null entry, and codes $0001 through $0020 are reserved for future use by
Apple Computer, Inc. You should thus ordinarily fill in this field with $0021, which is
the code for a pronunciation entry, or $0022, which is the code for an abbreviation
entry. In the current version of the Speech Manager, abbreviation entries work just like
pronunciation entries.

■ Field count. The number of pronunciation dictionary entry fields contained within
this entry.

Immediately following the field count indicator are the fields themselves. Typically, a
pronunciation entry always includes a field containing the word in textual format and
a field containing the phonetic pronunciation of the word.

Each field within a dictionary entry has the format illustrated in Figure 4-7.

 Dictionary entry Bytes

Length of entry 2

Entry type 2

Number of fields 2

First field Variable

Last field Variable
4-92 Speech Manager Reference

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Figure 4-7 Format of a dictionary entry field

The three parts of a dictionary entry field are as follows:

■ Field byte length. The total number of bytes in the pronunciation entry field, not
including the pad byte of the field data when applicable.

■ Field type. A code for the format of the pronunciation dictionary entry field’s data.
The code $0000 represents a null entry field, and Apple reserves codes $0001 through
$0020 as well as code $0023 for future use. Code $0021 represents a textual
representation of the word being described in the entry. Code $0022 represents a
phonetic pronunciation of the word, including a complete set of syllable, lexical stress,
word prominence, and prosodic marks, all represented in textual format.

■ Field data. If the field type is $0021 or $0022, then this field contains characters
representing the word textually or phonetically, respectively. The characters are not
preceded by a length byte and are not followed by a null character. However, if there
are an odd number of characters, then a byte must be added as padding to ensure that
fields align on word boundaries. The pad byte need not be set to a particular value.

 Dictionary entry field Bytes

Length of entry 2

Field type 2

Field data Variable
Speech Manager Reference 4-93

C H A P T E R 4

Speech Manager
Summary of the Speech Manager 4

Pascal Summary 4

Constants 4

CONST

{Gestalt selector and response bits for speech attributes}

gestaltSpeechAttr = 'ttsc'; {speech attributes selector}

gestaltSpeechMgrPresent = 0; {Speech Manager is present}

gestaltSpeechHasPPCGlue = 1; {native glue for PowerPC present}

{Operating System types}

kTextToSpeechSynthType = 'ttsc'; {synthesizer component type}

kTextToSpeechVoiceType = 'ttvd'; {voice resource type}

kTextToSpeechVoiceFileType = 'ttvf'; {voice file type}

kTextToSpeechVoiceBundleType

= 'ttvb'; {voice bundle file type}

{masks for SpeakBuffer and text-done callback control flags}

kNoEndingProsody = 1; {disable prosody at end of sentences}

kNoSpeechInterrupt = 2; {do not interrupt current speech}

kPreflightThenPause = 4; {compute speech without generating}

{constants for StopSpeechAt and PauseSpeechAt}

kImmediate = 0; {stop immediately}

kEndOfWord = 1; {stop at end of word}

kEndOfSentence = 2; {stop at end of sentence}

{GetSpeechInfo and SetSpeechInfo selectors}

soCharacterMode = 'char'; {get or set character-processing mode}

soCommandDelimiter = 'dlim'; {set embedded command delimiters}

soCurrentA5 = 'myA5'; {set A5 on callbacks}

soCurrentVoice = 'cvox'; {set speaking voice}

soErrorCallBack = 'ercb'; {set error callback}

soErrors = 'erro'; {get error information}

soInputMode = 'inpt'; {get or set text-processing mode}

soNumberMode = 'nmbr'; {get or set number-processing mode}

soPhonemeCallBack = 'phcb'; {set phoneme callback}
4-94 Summary of the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
soPhonemeSymbols = 'phsy'; {get phoneme symbols and sample words}

soPitchBase = 'pbas'; {get or set baseline pitch}

soPitchMod = 'pmod'; {get or set pitch modulation}

soRate = 'rate'; {get or set speech rate}

soRecentSync = 'sync'; {get most recent synchronization }

{ message information}

soRefCon = 'refc'; {set reference constant value}

soReset = 'rset'; {set channel back to default state}

soSpeechDoneCallBack = 'sdcb'; {set speech-done callback}

soStatus = 'stat'; {get status of channel}

soSyncCallBack = 'sycb'; {set synchronization callback}

soSynthExtension = 'xtnd'; {get or set synthesizer-specific }

{ information}

soSynthType = 'vers'; {get synthesizer information}

soTextDoneCallBack = 'tdcb'; {set text-done callback}

soVolume = 'volm'; {get or set speech volume}

soWordCallBack = 'wdcb'; {set word callback}

{input mode constants}

modeText = 'TEXT';

modePhonemes = 'PHON';

{character and number mode constants}

modeNormal = 'NORM';

modeLiteral = 'LTRL';

{GetVoiceInfo selectors}

soVoiceDescription = 'info'; {get basic voice information}

soVoiceFile = 'fref'; {get voice file reference information}

{genders}

kNeuter = 0;

kMale = 1;

kFemale = 2;

Data Structures 4

Speech Channel Record

TYPE

SpeechChannelRecord = LongInt; {speech channel record}

SpeechChannel = ^SpeechChannelRecord; {speech channel}

SpeechChannelPtr = ^SpeechChannel; {speech channel pointer}
Summary of the Speech Manager 4-95

C H A P T E R 4

Speech Manager
Voice Specification Record

VoiceSpec =

RECORD

creator: OSType; {ID of required synthesizer}

id: OSType; {ID of voice on the synthesizer}

END;

VoiceSpecPtr = ^VoiceSpec;

Voice Description Record

VoiceDescription =

RECORD

length: LongInt; {size of record--set by application}

voice: VoiceSpec; {voice synthesizer and ID info}

version: LongInt; {version number of voice}

name: Str63; {name of voice}

comment: Str255; {text information about voice}

gender: Integer; {neuter, male, or female}

age: Integer; {approximate age in years}

script: Integer; {script code of text voice can }

{ process}

language: Integer; {language code of voice output}

region: Integer; {region code of voice output}

reserved1: LongInt; {always 0--reserved for future use}

reserved2: LongInt; {always 0--reserved for future use}

reserved3: LongInt; {always 0--reserved for future use}

reserved4: LongInt; {always 0--reserved for future use}

END;

VoiceDescriptionPtr = ^VoiceDescription;

Voice File Information Record

VoiceFileInfo =

RECORD

fileSpec: FSSpec; {volume, dir, and name of file}

resID: Integer; {resource ID of voice in the file}

END;

VoiceFileInfoPtr = ^VoiceFileInfo;
4-96 Summary of the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Speech-Status Information Record

SpeechStatusInfo =

RECORD

outputBusy: Boolean; {TRUE if audio is playing}

outputPaused: Boolean; {TRUE if channel is paused}

inputBytesLeft: LongInt; {bytes of text left to process}

phonemeCode: Integer; {opcode for current phoneme}

END;

SpeechStatusInfoPtr = ^SpeechStatusInfo;

Speech Error Information Record

SpeechErrorInfo =

RECORD

count: Integer; {number of errors since last check}

oldest: OSErr; {oldest unread error}

oldPos: LongInt; {character position of oldest error}

newest: OSErr; {most recent error}

newPos: LongInt; {character position of newest error}

END;

Speech Version Information Record

SpeechVersionInfo =

RECORD

synthType: OSType; {general synthesizer type}

synthSubType: OSType; {specific synthesizer type}

synthManufacturer:

OSType; {synthesizer creator ID}

synthFlags: LongInt; {synthesizer feature flags}

synthVersion: NumVersion; {synthesizer version number}

END;

SpeechVersionInfoPtr = ^SpeechVersionInfo;

Phoneme Information Record

PhonemeInfo =

RECORD

opCode: Integer; {opcode for the phoneme}

phStr: Str15; {corresponding character string}

exampleStr: Str31; {word that shows use of phoneme}

hiliteStart: Integer; {offset from beginning of word }

{ to beginning of phoneme sound}
Summary of the Speech Manager 4-97

C H A P T E R 4

Speech Manager
hiliteEnd: Integer; {offset from beginning of word }

{ to end of phoneme sound}

END;

Phoneme Descriptor Record

PhonemeDescriptor =

RECORD

phonemeCount: Integer; {number of phonemes defined by }

{ current synthesizer}

{list of phoneme information records}

thePhonemes: ARRAY[0..0] OF PhonemeInfo;

END;

Speech Extension Data Record

SpeechXtndData =

RECORD

synthCreator: OSType; {synthesizer creator ID}

{data used by synthesizer}

synthData: PACKED ARRAY[0..1] OF Char;

END;

Delimiter Information Record

DelimiterInfo =

RECORD

startDelimiter: PACKED ARRAY[0..1] OF Char; {start delimiter}

endDelimiter: PACKED ARRAY[0..1] OF Char; {end delimiter}

END;

Speech Manager Routines 4

Starting, Stopping, and Pausing Speech

FUNCTION SpeakString (s: Str255): OSErr;

FUNCTION SpeakText (chan: SpeechChannel; textBuf: Ptr;
byteLen: LongInt): OSErr;

FUNCTION SpeakBuffer (chan: SpeechChannel; textBuf: Ptr;
byteLen: LongInt; controlFlags: LongInt):
OSErr;

FUNCTION StopSpeech (chan: SpeechChannel): OSErr;
4-98 Summary of the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
FUNCTION StopSpeechAt (chan: SpeechChannel; whereToStop: LongInt):
OSErr;

FUNCTION PauseSpeechAt (chan: SpeechChannel; whereToStop: LongInt):
OSErr;

FUNCTION ContinueSpeech (chan: SpeechChannel): OSErr;

Obtaining Information About Voices

FUNCTION MakeVoiceSpec (creator: OSType; id: OSType;
voice: VoiceSpecPtr): OSErr;

FUNCTION CountVoices (VAR numVoices: Integer): OSErr;

FUNCTION GetIndVoice (index: Integer; voice: VoiceSpecPtr): OSErr;

FUNCTION GetVoiceDescription
(voice: VoiceSpecPtr;
info: VoiceDescriptionPtr; infoLength: LongInt)
: OSErr;

FUNCTION GetVoiceInfo (voice: VoiceSpecPtr; selector: OSType;
voiceInfo: Ptr): OSErr;

Managing Speech Channels

FUNCTION NewSpeechChannel (voice: VoiceSpecPtr; VAR chan: SpeechChannel):
OSErr;

FUNCTION DisposeSpeechChannel
(chan: SpeechChannel): OSErr;

Obtaining Information About Speech

FUNCTION SpeechManagerVersion
: NumVersion;

FUNCTION SpeechBusy : Integer;

FUNCTION SpeechBusySystemWide
: Integer;

Changing Speech Attributes

FUNCTION GetSpeechRate (chan: SpeechChannel; VAR rate: Fixed): OSErr;

FUNCTION SetSpeechRate (chan: SpeechChannel; rate: Fixed): OSErr;

FUNCTION GetSpeechPitch (chan: SpeechChannel; VAR pitch: Fixed): OSErr;

FUNCTION SetSpeechPitch (chan: SpeechChannel; pitch: Fixed): OSErr;

FUNCTION GetSpeechInfo (chan: SpeechChannel; selector: OSType;
speechInfo: Ptr): OSErr;

FUNCTION SetSpeechInfo (chan: SpeechChannel; selector: OSType;
speechInfo: Ptr): OSErr;
Summary of the Speech Manager 4-99

C H A P T E R 4

Speech Manager
Converting Text to Phonemes

FUNCTION TextToPhonemes (chan: SpeechChannel; textBuf: Ptr;
textBytes: LongInt; phonemeBuf: Handle;
VAR phonemeBytes: LongInt): OSErr;

Installing a Pronunciation Dictionary

FUNCTION UseDictionary (chan: SpeechChannel; dictionary: Handle)
: OSErr;

Application-Defined Routines 4

PROCEDURE MyTextDoneCallback
(chan: SpeechChannel; refCon: LongInt;
VAR nextBuf: Ptr; VAR byteLen: LongInt;
VAR controlFlags: LongInt);

PROCEDURE MySpeechDoneCallback
(chan: SpeechChannel; refCon: LongInt);

PROCEDURE MySynchronizationCallback
(chan: SpeechChannel; refCon: LongInt;
syncMessage: OSType);

PROCEDURE MyErrorCallback (chan: SpeechChannel; refCon: LongInt;
error: OSErr; bytePos: LongInt);

PROCEDURE MyPhonemeCallback
(chan: SpeechChannel; refCon: LongInt;
phonemeOpcode: Integer);

PROCEDURE MyWordCallback (chan: SpeechChannel; refCon: LongInt;
wordPos: LongInt; wordLen: Integer);

C Summary 4

Constants 4

/*Gestalt selector and response bits for speech attributes*/

#define gestaltSpeechAttr 'ttsc' /*speech attributes selector*/

enum {

gestaltSpeechMgrPresent = 0 /*Speech Manager is present*/

gestaltSpeechHasPPCGlue = 1 /*native glue for PowerPC present*/

};
4-100 Summary of the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
/*Operating System types*/

#define kTextToSpeechSynthType 'ttsc' /*synthesizer component */

/* type*/

#define kTextToSpeechVoiceType 'ttvd' /*voice resource type*/

#define kTextToSpeechVoiceFileType 'ttvf' /*voice file type*/

#define kTextToSpeechVoiceBundleType 'ttvb' /*voice bundle file type*/

/*masks for SpeakBuffer and text-done callback control flags*/

enum {

kNoEndingProsody = 1, /*disable prosody at end of sentences*/

kNoSpeechInterrupt = 2, /*do not interrupt current speech*/

kPreflightThenPause = 4 /*compute speech without generating*/

};

/*constants for StopSpeechAt and PauseSpeechAt*/

enum {

kImmediate = 0, /*stop immediately*/

kEndOfWord = 1, /*stop at end of word*/

kEndOfSentence = 2 /*stop at end of sentence*/

};

/*GetSpeechInfo and SetSpeechInfo selectors*/

#define soCharacterMode 'char' /*get or set character-processing */

/* mode*/

#define soCommandDelimiter 'dlim' /*set embedded command delimiters*/

#define soCurrentA5 'myA5' /*set A5 on callbacks*/

#define soCurrentVoice 'cvox' /*set speaking voice*/

#define soErrorCallBack 'ercb' /*set error callback*/

#define soErrors 'erro' /*get error information*/

#define soInputMode 'inpt' /*get or set text-processing mode*/

#define soNumberMode 'nmbr' /*get or set number-processing mode*/

#define soPhonemeCallBack 'phcb' /*set phoneme callback*/

#define soPhonemeSymbols 'phsy' /*get phoneme symbols and sample*/

/* words*/

#define soPitchBase 'pbas' /*get or set baseline pitch*/

#define soPitchMod 'pmod' /*get or set pitch modulation*/

#define soRate 'rate' /*get or set speech rate*/

#define soRecentSync 'sync' /*get most recent synchronization */

/* message information*/

#define soRefCon 'refc' /*set reference constant value*/

#define soReset 'rset' /*set channel back to default state*/

#define soSpeechDoneCallBack 'sdcb' /*set speech-done callback*/

#define soStatus 'stat' /*get status of channel*/

#define soSyncCallBack 'sycb' /*set synchronization callback*/
Summary of the Speech Manager 4-101

C H A P T E R 4

Speech Manager
#define soSynthExtension 'xtnd' /*get or set synthesizer-specific */

/* information*/

#define soSynthType 'vers' /*get synthesizer information*/

#define soTextDoneCallBack 'tdcb' /*set text-done callback*/

#define soVolume 'volm' /*get or set speech volume*/

#define soWordCallBack 'wdcb' /*set word callback*/

/*input mode constants*/

#define modeText 'TEXT'

#define modePhonemes 'PHON'

/*character and number mode constants*/

#define modeNormal 'NORM'

#define modeLiteral 'LTRL'

/*GetVoiceInfo selectors*/

enum {

soVoiceDescription = 'info', /*get basic voice information*/

soVoiceFile = 'fref' /*get voice file reference information*/

};

/*genders*/

enum {

kNeuter = 0,

kMale,

kFemale

};

Data Types 4

Speech Channel Record

typedef struct SpeechChannelRecord {

long data[1]; /*used internally*/

} SpeechChannelRecord;

typedef SpeechChannelRecord *SpeechChannel;

Voice Specification Record

typedef struct VoiceSpec {

OSType creator; /*ID of required synthesizer*/

OSType id; /*ID of voice on the synthesizer*/

} VoiceSpec;
4-102 Summary of the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Voice Description Record

typedef struct VoiceDescription {

long length; /*size of structure--set by application*/

VoiceSpec voice; /*voice synthesizer and ID info*/

long version; /*version number of voice*/

Str63 name; /*name of voice*/

Str255 comment; /*text information about voice*/

short gender; /*neuter, male, or female*/

short age; /*approximate age in years*/

short script; /*script code of text voice can process*/

short language; /*language code of voice output*/

short region; /*region code of voice output*/

long reserved[4]; /*always 0--reserved for future use*/

} VoiceDescription;

Voice File Information Record

typedef struct VoiceFileInfo {

FSSpec fileSpec; /*volume, dir, and name of file*/

short resID; /*resource ID of voice in the file*/

} VoiceFileInfo;

Speech Status Information Record

typedef struct SpeechStatusInfo {

Boolean outputBusy; /*TRUE if audio is playing*/

Boolean outputPaused; /*TRUE if channel is paused*/

long inputBytesLeft; /*bytes of text left to process*/

short phonemeCode; /*opcode for current phoneme*/

} SpeechStatusInfo;

Speech Error Information Record

typedef struct SpeechErrorInfo {

short count; /*number of errors since last check*/

OSErr oldest; /*oldest unread error*/

long oldPos; /*character position of oldest error*/

OSErr newest; /*most recent error*/

long newPos; /*character position of newest error*/

} SpeechErrorInfo;
Summary of the Speech Manager 4-103

C H A P T E R 4

Speech Manager
Speech Version Information Record

typedef struct SpeechVersionInfo {

OSType synthType; /*general synthesizer type*/

OSType synthSubType; /*specific synthesizer type*/

OSType synthManufacturer; /*synthesizer creator ID*/

long synthFlags; /*synthesizer feature flags*/

NumVersion synthVersion; /*synthesizer version number*/

} SpeechVersionInfo;

Phoneme Information Record

typedef struct PhonemeInfo {

short opcode; /*opcode for the phoneme*/

Str15 phStr; /*corresponding character string*/

Str31 exampleStr; /*word that shows use of phoneme*/

short hiliteStart; /*offset from beginning of word */

/* to beginning of phoneme sound*/

short hiliteEnd; /*offset from beginning of word */

/* to end of phoneme sound*/

} PhonemeInfo;

Phoneme Descriptor Record

typedef struct PhonemeDescriptor {

short phonemeCount; /*number of phonemes defined by */

/* current synthesizer*/

PhonemeInfo thePhonemes[1]; /*list of phoneme information records*/

} PhonemeDescriptor;

Speech Extension Data Record

typedef struct SpeechXtndData {

OSType synthCreator; /*synthesizer creator ID*/

Byte synthData[2]; /*data used by synthesizer*/

} SpeechXtndData;

Delimiter Information Record

typedef struct DelimiterInfo {

Byte startDelimiter[2]; /*start delimiter*/

Byte endDelimiter[2]; /*end delimiter*/

} DelimiterInfo;
4-104 Summary of the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Speech Manager Routines 4

Starting, Stopping, and Pausing Speech

pascal OSErr SpeakString (StringPtr s);

pascal OSErr SpeakText (SpeechChannel chan, Ptr textBuf,
long textBytes);

pascal OSErr SpeakBuffer (SpeechChannel chan, Ptr textBuf,
long textBytes, long controlFlags);

pascal OSErr StopSpeech (SpeechChannel chan);

pascal OSErr StopSpeechAt (SpeechChannel chan, long whereToStop);

pascal OSErr PauseSpeechAt (SpeechChannel chan, long whereToPause);

pascal OSErr ContinueSpeech
(SpeechChannel chan);

Obtaining Information About Voices

pascal OSErr MakeVoiceSpec (OSType creator, OSType id, VoiceSpec *voice);

pascal OSErr CountVoices (short *numVoices);

pascal OSErr GetIndVoice (short index, VoiceSpec *voice);

pascal OSErr GetVoiceDescription
(VoiceSpec *voice, VoiceDescription *info,
long infoLength);

pascal OSErr GetVoiceInfo (VoiceSpec *voice, OSType selector,
void *voiceInfo);

Managing Speech Channels

pascal OSErr NewSpeechChannel
(VoiceSpec *voice, SpeechChannel *chan);

pascal OSErr DisposeSpeechChannel
(SpeechChannel chan);

Obtaining Information About Speech

pascal NumVersion SpeechManagerVersion
(void);

pascal short SpeechBusy (void);

pascal short SpeechBusySystemWide
(void);

Changing Speech Attributes

pascal OSErr GetSpeechRate (SpeechChannel chan, Fixed *rate);
Summary of the Speech Manager 4-105

C H A P T E R 4

Speech Manager
pascal OSErr SetSpeechRate (SpeechChannel chan, Fixed rate);

pascal OSErr GetSpeechPitch
(SpeechChannel chan, Fixed *pitch);

pascal OSErr SetSpeechPitch
(SpeechChannel chan, Fixed pitch);

pascal OSErr GetSpeechInfo (SpeechChannel chan, OSType selector,
void *speechInfo);

pascal OSErr SetSpeechInfo (SpeechChannel chan, OSType selector,
void *speechInfo);

Converting Text to Phonemes

pascal OSErr TextToPhonemes
(SpeechChannel chan, Ptr textBuf,
long textBytes, Handle phonemeBuf,
long *phonemeBytes);

Installing a Pronunciation Dictionary

pascal OSErr UseDictionary (SpeechChannel chan, Handle dictionary);

Application-Defined Routines 4

#pragma procname SpeechTextDone

typedef pascal void (*SpeechTextDoneCBPtr)
(SpeechChannel, long, Ptr *, long *, long *);

typedef SpeechTextDoneProcPtr SpeechTextDoneCBPtr;

#pragma procname SpeechDone

typedef pascal void (*SpeechDoneCBPtr)
(SpeechChannel, long);

typedef SpeechDoneProcPtr SpeechDoneCBPtr;

#pragma procname SpeechSync

typedef pascal void (*SpeechSyncCBPtr)
(SpeechChannel, long, OSType);

typedef SpeechSyncProcPtr SpeechSyncCBPtr;

#pragma procname SpeechError

typedef pascal void (*SpeechErrorCBPtr)
(SpeechChannel, long, OSErr, long);

typedef SpeechErrorProcPtr SpeechErrorCBPtr;

#pragma procname SpeechPhoneme

typedef pascal void (*SpeechPhonemeCBPtr)
(SpeechChannel, long, short);

typedef SpeechPhonemeProcPtr SpeechPhonemeCBPtr;
4-106 Summary of the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
#pragma procname SpeechWord

typedef pascal void (*SpeechWordCBPtr)
(SpeechChannel, long, long, short);

typedef SpeechWordProcPtr SpeechWordCBPtr;

Assembly-Language Information 4

Data Structures 4

Voice Specification Data Structure

Voice Description Data Structure

Voice File Information Data Structure

Speech Status Information Data Structure

0 creator 4 bytes ID of required synthesizer
4 id 4 bytes ID of voice on the synthesizer

0 length long size of structure—set by application
4 voice 8 bytes voice specification record

12 version long version number of voice
16 name 64 bytes name of voice; preceded by length byte
80 comment 256 bytes text information about voice; preceded by length

byte
336 gender short neuter (0), male (1), or female (2)
338 age short approximate age in years
340 script short script code of text voice can process
342 language short language code of text voice can process
344 region short region code of voice output
346 reserved 16 bytes always set to 0—reserved for future use

0 fileSpec 70 bytes volume, directory, and name of file
70 resID word resource ID of voice in the file

0 outputBusy byte 1 if audio is playing
1 outputPaused byte 1 if channel is paused
2 inputBytesLeft long bytes of text left to process
6 phonemeCode short opcode for current phoneme
Summary of the Speech Manager 4-107

C H A P T E R 4

Speech Manager
Speech Error Information Data Structure

Speech Version Information Data Structure

Phoneme Information Data Structure

Phoneme Descriptor Data Structure

Speech Extension Data Structure

Delimiter Information Data Structure

0 count word number of errors since last check
2 oldest long oldest unread Operating System error
6 oldPos long character position of oldest error

10 newest long newest Operating System error
14 newPos long character position of newest error

0 synthType 4 bytes always 'TTSC'
4 synthSubType 4 bytes synthesizer type
8 synthManufacturer 4 bytes synthesizer creator ID

12 synthFlags long synthesizer feature flags
16 synthVersion long synthesizer version number

0 opcode word opcode for the phoneme
2 phStr 16 bytes corresponding character string; preceded by length byte

18 exampleStr 32 bytes word that shows use of phoneme
50 hiliteStart word offset from beginning of word to beginning of phoneme

sound
52 hiliteEnd word offset from beginning of word to end of phoneme sound

0 phonemeCount word number of phonemes defined by current synthesizer
2 thePhonemes variable list of phoneme information records

0 synthCreator 4 bytes synthesizer creator ID
4 synthData variable data used by synthesizer

0 startDelimiter 2 bytes start embedded command characters; defaults to “[[”
2 endDelimiter 2 bytes end embedded command characters; defaults to “]]”
4-108 Summary of the Speech Manager

C H A P T E R 4

Speech Manager

4
S

peech M
anager
Trap Macros 4

Trap Macro Requiring Routine Selectors
_SoundDispatch

Selector Routine

$0000000C SpeechManagerVersion

$003C000C SpeechBusy

$0040000C SpeechBusySystemWide

$0108000C CountVoices

$021C000C DisposeSpeechChannel

$0220000C SpeakString

$022C000C StopSpeech

$0238000C ContinueSpeech

$030C000C GetIndVoice

$0418000C NewSpeechChannel

$0430000C StopSpeechAt

$0434000C PauseSpeechAt

$0444000C SetSpeechRate

$0448000C GetSpeechRate

$044C000C SetSpeechPitch

$0450000C GetSpeechPitch

$0460000C UseDictionary

$0604000C MakeVoiceSpec

$0610000C GetVoiceDescription

$0614000C GetVoiceInfo

$0624000C SpeakText

$0654000C SetSpeechInfo

$0658000C GetSpeechInfo

$0828000C SpeakBuffer

$0A5C000C TextToPhonemes
Summary of the Speech Manager 4-109

C H A P T E R 4

Speech Manager
Result Codes 4
noErr 0 No error
paramErr –50 Parameter error
memFullErr –108 Not enough memory to speak
nilHandleErr –109 Handle argument is NIL
siUnknownInfoType –231 Feature not implemented on synthesizer
noSynthFound –240 Could not find the specified speech synthesizer
synthOpenFailed –241 Could not open another speech synthesizer channel
synthNotReady –242 Speech synthesizer is still busy speaking
bufTooSmall –243 Output buffer is too small to hold result
voiceNotFound –244 Voice resource not found
incompatibleVoice –245 Specified voice cannot be used with synthesizer
badDictFormat –246 Pronunciation dictionary format error
badPhonemeText –247 Raw phoneme text contains invalid characters
unimplMsg –248 Unimplemented message
badVoiceID –250 Specified voice has not been preloaded
badParmCount –252 Incorrect number of embedded command arguments
invalidComponentID –3000 Speech channel is uninitialized or bad
4-110 Summary of the Speech Manager

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	 Sound Manager
	 Sound Input Manager TOC
	 Sound Input Manager
	 Speech Manager TOC
	Speech Manager
	About the Speech Manager
	Voices
	Speech Attributes
	Speech Channels
	Callback Routines

	Using the Speech Manager
	Checking for Speech Manager Capabilities
	Creating, Using, and Disposing of a Speech Channel...
	Working With Different Voices
	Adjusting Speech Attributes
	Pausing Speech
	Implementing Callback Procedures
	Writing Embedded Speech Commands
	Embedded Command Delimiters
	Syntax of Embedded Speech Commands
	Examples of Embedded Speech Commands

	Phonemic Representation of Speech
	Phonemic Symbols
	Prosodic Control Symbols

	Including Pronunciation Dictionaries

	Speech Manager Reference
	Constants
	Speech Information Selectors

	Data Structures
	Voice Specification Records
	Voice Description Records
	Voice File Information Records
	Speech Status Information Records
	Speech Error Information Records
	Speech Version Information Records
	Phoneme Information Records
	Phoneme Descriptor Records
	Speech Extension Data Records
	Delimiter Information Records

	Speech Manager Routines
	Starting, Stopping, and Pausing Speech
	Obtaining Information About Voices
	Managing Speech Channels
	Obtaining Information About Speech
	Changing Speech Attributes
	Converting Text To Phonemes
	Installing a Pronunciation Dictionary

	Application-Defined Routines
	Text-Done Callback Procedure
	Speech-Done Callback Procedure
	Synchronization Callback Procedure
	Error Callback Procedure
	Phoneme Callback Procedure
	Word Callback Procedure

	Resources
	The Pronunciation Dictionary Resource

	Summary of the Speech Manager
	Pascal Summary
	Constants
	Data Structures
	Speech Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Speech Manager Routines
	Application-Defined Routines

	Assembly-Language Information
	Data Structures
	Trap Macros

	Result Codes

	 Sound Components TOC
	 Sound Components
	 Audio Components TOC
	 Audio Components
	 Glossary
	 Index
	 Colophon

